MATH3401

Complex Analysis

Lecture 7

Final remarks on
Möbius transformations (MT)

continued

Remark 2:

\(w=\dfrac{az+b}{cz+d}\) \(=\dfrac{\left(\lambda a\right)z+\left(\lambda b\right)}{\left(\lambda c\right)z+\left(\lambda d\right)}\) for every \(\lambda \in \C_*\).

Final remarks on MT

continued

Remark 3: Any Möbius transformation that maps the upper half plane \(\Im(z) > 0\) (UHP) onto the open disk \(|w|<1\) and the boundary \(\Im(z)=0\) of the half plane onto the boundary \(|w|=1\) of the disk, has the form \[ w = e^{i\alpha}\frac{z-z_0}{z-\conj{z_0}} \] for some \(\alpha \in \R\) and \(z_0\in \C\), with \(\Im(z_0)>0\).

Conversely: Any Möbius transformation of this form maps the UHP onto the inside of the unit circle.

Exponential map

\(z \mapsto e^z = \exp(z)=w\), with dom\((w)=\C\).

For \(z=x+iy\) with \(x,y\in \R\),

\(w= e^z=e^{x+iy}=e^xe^{iy}\)

\(\quad = e^x\left( \cos y + i \sin y \right) = u+iv \)

where \(u=e^x\cos y, v=e^x\sin y\).

Exponential map

Write \(w=\rho e^{i\phi}\), where: \[ \left\{ \begin{array}{rl} \rho &= e^{x} \\ \phi &= y + 2 k \pi, \; k\in \Z \end{array} \right. \]

Images under \(\exp\)

Vertical line \(x=c_1\).

\(\tiny\exp\)
\(\ra\)

Images under \(\exp\)

Vertical line \(y=c_2\).

\(\tiny\exp\)
\(\ra\)

Images under \(\exp\)

How about:

\(\tiny\exp\)
\(\ra\)
\(\tiny h < 2\pi\)

Images under \(\exp\)

How about:

\(\tiny\exp\)
\(\ra\)
\(\tiny h \geq 2\pi\)

Properties of \(\exp\)

Many "laws" for \(\R\)-\(\exp\) extend to \(\C\)-\(\exp\):

  1. \(e^0=1\);
  2. \(e^{-z}=1/e^{z};\)
  3. \(e^{z_1+z_2}= e^{z_1}e^{z_2};\)
  4. \(e^{z_1-z_2}= \dfrac{e^{z_1}}{e^{z_2}};\)
  5. \(\left(e^{z_1}\right)^{z_2}= e^{z_1z_2}\).

Properties of \(\exp\)

Some things do not extend:

  1. \(e^x > 0\) for all \(x\in \R\), but e.g. \(e^{i\pi}=-1\) and \(e^{i\pi/4}\in\C\setminus \R\);
  2. \(x \mapsto e^x\) is monotone increasing on \(R\) but \(z\mapsto e^z\) is periodic,
    with period \(2\pi i\): \[ \begin{array}{rl} e^{z+2\pi i} &= e^{z}e^{2\pi i} \\ &= e^z\left( \cos 2\pi + i \sin 2 \pi \right)\\ &= e^z. \end{array} \]

Note: as in \(\R\), \(e^z=0\) has no solution in \(\C\). If exists \(z=x+iy\) such that \(e^z=0\), then \(e^xe^{iy} = 0 \implies e^x=0\). Contradiction!

Inverses

\(f:\Omega \ra \C\). Then \(g : \text{Range}\big(f\big) \ra \Omega\) is an inverse of \(f\)
says that

\( f\circ g: \Omega \ra \Omega \) is the identity,

i.e. \(\left(f \circ f \right)(z) = z\) for every \(z\in \Omega\).

E.g. \(z\mapsto z+1\), \(z\mapsto z-1\) are inverses \(\C\ra \C\);
\(z\mapsto 1/z\) is its own inverse, \(\C_*\ra \C_*\).

Inverse of \(\exp\)?

Credits