MATH3401

Complex Analysis

Lecture 26

Dirichlet and Neumann problems

\(\,f\) conformal. \(C\) is a smooth (infinitely differentiable) arc in \(\Omega\), and \(\Gamma = f(C)\).

As before, take \(H(x,y) = h\left(u(x,y), v(x,y)\right)\).

Dirichlet and Neumann problems

1) If we have Dirichlet (boundary) conditions on \(\Gamma\), i. e. \(h(u,v) = \varphi\) on \(\Gamma\), then \[H(x,y) = \varphi \text{ on } C.\]

2) If we have homogeneous Neumann boundary conditions on \(\Gamma\), i. e. \(\dfrac{\partial h}{\partial \mathbf n} = 0\) for any normal \(\mathbf n \) to \(\Gamma\), then \[\frac{\partial H}{\partial \mathbf N} \text{ for any normal } \mathbf N \text{ to } C.\]

Dirichlet and Neumann problems

Example: In \(\C\) (\(w\)-plane), the function \[h(u,v) = v = \Im(w)\] is harmonic, in particular on the horizontal strip \(\Lambda\), \[-\frac{\pi}{2} \le v \le \frac{\pi}{2} .\]

Claim: \(f:z \mapsto \Log z\), maps \(\Omega\) onto the interior of \(\Lambda\).

Dirichlet and Neumann problems

Sketch of mapping

Dirichlet and Neumann problems

\(z \mapsto \Log z\) \(= \ln |z| + i \Arg (z)\)

\(\qquad \quad \;\; \;= \ln \sqrt{x^2+y^2} + i \arctan \left(\dfrac{y}{x}\right)\).

\(H(x,y)= \arctan \left(\dfrac{y}{x}\right)\) on \(\Omega\).

Credits