Lecture 20
Further examples
Example 4: Evaluate \(I = \ds \int_C \frac{dz}{z}\), where \(C= 2e^{i\theta}\), \(0\leq \theta \leq 2 \pi\).
Can't repeat argument from Example 3 directly.
\(I = I_1 + I_2\) where \(I_j = \ds \int_{C_j}\frac{dz}{z}\) |
Further examples
Example 4 (cont): On \[D = \C \setminus \{\text{negative real axis}\cup \{0\}\},\] \(\Log z\) is a primitive for \(\dfrac{1}{z}\). \(C_1\subset D\), so Theorem in Lecture 19 \(\Rightarrow\)
\(I_1 = \Log(2i)-\Log(-2i)\) \(= \ln|2i| + i\dfrac{\pi}{2}-\left(\ln|-2i| + i\left(-\dfrac{\pi}{2}\right)\right)\)
\(\quad = \pi i\).
Remark: Agrees with calculation from Lecture 19, Example 1.
Further examples
Example 4 (cont): For \(I_2\), on \[D' = \C \setminus \{\text{positive real axis}\cup \{0\}\},\] \(1/z\) has a primitive, e. g. \(\mathcal \Log z = \ln|z| + i \,{\Large\mathcal a}\mathcal rg(z) \), \(0 \leq {\Large\mathcal a}\mathcal rg(z) < 2 \pi\).
Note \(C_2 \subset D'\). So Theorem in Lecture 19 \(\Rightarrow\)
\(I_2 = \mathcal \Log(-2i)-\mathcal \Log(2i)\) \( = \ln 2 + i\dfrac{3\pi}{2}-\left(\ln 2 + i\left(\dfrac{\pi}{2}\right)\right)\)
\(\quad = \pi i\).
Thus \(I= I_1 + I_2 = 2 \pi i\).
Further examples
Example 4 (cont): So \[ \int_C z^n dz = \left\{ \begin{array}{lr} 0 & n\in \Z\setminus \{-1\}\\ 2 \pi i & n=-1 \end{array} \right. \]
for any circle \(C\) centred at the origin, positively oriented.
Let \(C\) be a simple closed curve in \(\C\). If \(f\) is analytic on \(C\) and its interior, then \[ \int_C f\left(z\right)dz = 0. \]
Remark: \(\ds \int_C f\left(z\right)dz = 0\) \(\nRightarrow\) \(f\) is analytic in and on \(C\).
e. g. \(\ds \int_C z^n dz = 0\), \(n= -2, -3, -4, \ldots \)
Proof of C-G: Do it for
Key step in proof: \(M\)-\(\ell\) estimate
Suppose \(f\) is continuous on a contour \(C\) given by \(z = z(t)\), \(a\leq t \leq b\). Then exists \( M\) such that \[ |f\left(z\right)| \leq M \quad \forall z\in\C, \]
via extreme value theorem in \(\R\).
So \(\ds \int_C f \left(z\right) dz =\left| \ds \int_a^b f \left(z \left(t\right)\right) z' \left(t\right) dt\right|\)
\(\qquad \qquad \quad \leq \ds \int_a^b \left| f \left(z \left(t\right)\right) \right| \cdot \left| z' \left(t\right)\right|dt \)
\(\qquad \qquad \quad \leq M \ds \int_a^b \left| z' \left(t\right)\right|dt \) \(= M \ell\).
where \(\ell = \ell\left(C\right)=\text{length}\) of \(C\).
Recall: a domain \(D\) is simply connected if for every simple closed contour \(C\) in \(D\), there holds \[ \text{Int}\, C \subset D. \]
i. e. "no holes". In other words, all simple closed contours are null homotopic.
If \(D\) is not simply connected, it is multiply connected.
Multiply connected domains
If \(f\) is analytic on simple closed contours \(C\), \(C_1, C_2, \ldots, C_n\subset \text{Int}\, C\), and the interior of the domain bounded by \(C_1, C_2, \ldots, C_n\), with \(C\) positively oriented and \(C_k\) negatively oriented, then \[ \int_C f + \sum_{j=1}^{n} \int_{C_j} f = 0. \]