Lecture 14
Example 1: Find the derivative of \(f(z)=4z^2\) from first principles, i. e. using the definition.
Put \(w = f(z)\) and take \(z_0\in \C\), then
\(\ds \lim_{\Delta z\ra 0} \frac{\Delta w}{\Delta z} = \lim_{\Delta z\ra 0} \frac{f(z_0+\Delta z)- f(z_0)}{\Delta z}\) \(=\ds \lim_{\Delta z\ra 0} \frac{4(z_0+\Delta z )^2-4z^2_0}{\Delta z}\)
\(=\ds \lim_{\Delta z\ra 0} \frac{4z_0^2+8z_0\Delta z + 4(\Delta z)^2- 4z_0^2}{\Delta z}\) \(=\ds \lim_{\Delta z\ra 0} 8z_0 + 4 \Delta z \) \(= 8 z_0\).
Thus \(f'(z)= 8z\).
Example 2: Find the derivative of \(f(z)=|z|^2\).
\(f'\) does not exist, except at \(z=0\). Proof: soon.
Note: differentiability \(\Rightarrow\) continuity
differentiability \(\nLeftarrow\) continuity
Example for \(\nLeftarrow\): \(|z|^2\) (or \(|z|\), or others).
(cf. \(f:\R \ra \R\))
For \(f, g\) differentiable functions:
\(f : z \mapsto w = u(x,y) + iv(x,y)\) . Suppose \(f\) is differentiable at \(z_0 = x_0+iy_0\). Set \(\Delta z = \Delta x + i \Delta y \) ... (♣️) \[f^{\prime} (z_0) = \lim_{\Delta z\ra 0}\frac{ \Delta w }{ \Delta z} \quad (1)\]
Key point: Derivative is independent of how \(\Delta z \ra 0\) (⚛️)
Note \(\Delta w = f(z_0+\Delta z)-f(z_0) \)
\(\qquad = u(x_0 +\Delta x, y_0 +\Delta y) + i v(x_0 +\Delta x, y_0 +\Delta y) \)
\(\qquad \;\;\,- u(x_0 , y_0 ) - i v(x_0 , y_0 ) \quad (2) \)
Now, from (1) we have
\(f^{\prime}(z_0) = \ds \lim_{\left(\Delta x, \Delta y\right)\ra (0,0)} \Re \left(\frac{\Delta w}{\Delta z}\right) + i \lim_{\left(\Delta x, \Delta y\right)\ra (0,0)} \Im \left(\frac{\Delta w}{\Delta z}\right) \quad (3) \)
As per (⚛️), the value of the limit is independent of how \(\left(\Delta x, \Delta y\right)\ra (0,0)\).
To start, let \(\left(\Delta x, \Delta y\right)\ra (0,0)\) along the \(x\)-axis, i. e. consider \(\Delta z\) of the form \(\left(\Delta x, 0\right)\) with \(\Delta x\neq 0\). So \[ \frac{\Delta w}{\Delta z} = \frac{u(x_0 +\Delta x, y_0) - u(x_0,y_0)}{\Delta x} + i \frac{v(x_0 +\Delta x, y_0) - v(x_0,y_0)}{\Delta x} \]
Hence
\(\ds \lim_{\left(\Delta x, \Delta y\right)\ra (0,0)} \Re \left(\frac{\Delta w}{\Delta z}\right) \) \(= u_x(x_0,y_0)\) \(= \ds \frac{\partial u}{\partial x}(x_0,y_0) \quad (4)\)
\(\ds \lim_{\left(\Delta x, \Delta y\right)\ra (0,0)} \Im \left(\frac{\Delta w}{\Delta z}\right) \) \(= v_x(x_0,y_0)\) \(= \ds \frac{\partial v}{\partial x}(x_0,y_0)\quad (5)\)
Repeat for \(\Delta z\) of the form \(\Delta z = 0 + i \Delta y\) with \(\Delta y\neq 0\),
i. e. \(\Delta z \ra 0\) on
the \(y\)-axis.
For this \(\Delta z\):
\[
\frac{\Delta w}{\Delta z} = \frac{u(x_0, y_0+\Delta y) - u(x_0,y_0)}{i \Delta y} + i
\frac{v(x_0, y_0+\Delta y) - v(x_0,y_0)}{i \Delta y}
\]
So
\(\ds \lim_{\left(\Delta x, \Delta y\right)\ra (0,0)} \Re \left(\frac{\Delta w}{\Delta z}\right) \) \(= v_y(x_0,y_0) \quad (6)\)
\(\ds \lim_{\left(\Delta x, \Delta y\right)\ra (0,0)} \Im \left(\frac{\Delta w}{\Delta z}\right) \) \(= -u_y(x_0,y_0) \quad (7)\)
Keeping in mind (⚛️), (4) & (6) and (5) & (7) imply
the
Cauchy-Riemann equations:
If \(f=u+iv\) is differentiable at \(z_0=x_0+iy_0\), then \[ \begin{align} u_x & = v_y \\ -v_x & = u_y \end{align} \quad \text{ at }\quad(x_0, y_0). \]
Note: We have shown that Cauchy-Riemann (C/R) are necessary for complex differentiability. They are not sufficient (later).
Sufficient conditions for \(f^{\prime}(z_0)\) to exist: