Summary Week 2
❤️ Support this project ❤️
PatreonConvergence of sequences
Definition: A sequence $\{ x_n \}$ is said to converge to a number $x \in \R$ if for every $\epsilon > 0$, there exists an $M \in \N$ such that $\abs{x_n - x} < \epsilon$ for all $n \geq M$. The number $x$ is said to be the limit of $\{ x_n \}$. We write \begin{equation*} \lim_{n\to \infty} x_n := x . \end{equation*}
Convergence of sequences
Bounded & Monotone
Theorem: A monotone sequence $\{ x_n \}$ is bounded if and only if it is convergent.
Bounded & Monotone
Increasing | Decreasing |
---|
$\displaystyle \lim_{n\to \infty} x_n = \sup \{ x_n : n \in \N \}$ | $\displaystyle \lim_{n\to \infty} x_n = \inf \{ x_n : n \in \N \}$ |
Squeeze Theorem
Squeeze Theorem
Theorem: Let $\{ a_n \}$, $\{ b_n \}$, and $\{ x_n \}$ be sequences such that \begin{equation*} a_n \leq x_n \leq b_n \quad \text{for all } n \in \N. \end{equation*} Suppose $\{ a_n \}$ and $\{ b_n \}$ converge and \begin{equation*} \lim_{n\to \infty} a_n = \lim_{n\to \infty} b_n . \end{equation*} Then $\{ x_n \}$ converges and \begin{equation*} \lim_{n\to \infty} x_n = \lim_{n\to \infty} a_n = \lim_{n\to \infty} b_n . \end{equation*} |
---|
Algebraic properties
Theorem: Let $\{ x_n \}$ and $\{ y_n \}$ be convergent sequences.
Some convergence tests
Theorem: Let $\{ x_n \}$ be a sequence. Suppose there is an $x \in \R$ and a convergent sequence $\{ a_n \}$ such that \begin{equation*} \lim_{n\to\infty} a_n = 0 \quad \text{ and } \quad \abs{x_n - x} \leq a_n \quad \text{for all $n \in \N$.} \end{equation*} Then $\{ x_n \}$ converges and $\lim\, x_n = x$.
Theorem: Let $c > 0$.
Some convergence tests
Theorem (Ratio test for sequences): Let $\{ x_n \}$ be a sequence such that $x_n \not= 0$ for all $n$ and such that the limit \begin{equation*} L := \lim_{n\to\infty} \frac{\abs{x_{n+1}}}{\abs{x_n}} \qquad \text{exists.} \end{equation*}
Upper & lower limits
Definition: Let $\{ x_n \}$ be a bounded sequence. Define the sequences $\{ a_n \}$ and $\{ b_n \}$ by $a_n := \sup \{ x_k : k \geq n \}$ and $b_n := \inf \{ x_k : k \geq n \}$. Define, if the limits exist, \begin{align*} \limsup_{n \to \infty} \, x_n & := \lim_{n \to \infty} a_n , \\ \liminf_{n \to \infty} \, x_n & := \lim_{n \to \infty} b_n . \end{align*}
Upper & lower limits
Upper & lower limits
Theorem: Let $\{ x_n \}$ be a bounded sequence. Let $a_n$ and $b_n$ be as in the definition above.
|
---|
Upper & lower limits
Upper & lower limits
Theorem: Let $\{ x_n \}$ be a bounded sequence. Then $\{ x_n \}$ converges if and only if \begin{equation*} \liminf_{n\to \infty} \, x_n = \limsup_{n\to \infty} \, x_n. \end{equation*} Furthermore, if $\{ x_n \}$ converges, then \begin{equation*} \lim_{n\to \infty} x_n = \liminf_{n\to \infty} \, x_n = \limsup_{n\to \infty} \, x_n. \end{equation*} |
---|
Bolzano-Weierstrass Theorem
Theorem: Suppose a sequence $\{ x_n \}$ of real numbers is bounded. Then there exists a convergent subsequence $\{ x_{n_i} \}$.
Cauchy sequences
Cauchy sequences
Theorem: A Cauchy sequence is bounded. Theorem: A sequence of real numbers is Cauchy if and only if it converges. |
---|