In 1945 George Polya published the book How To Solve It which quickly became his most prized publication. It sold over one million copies and has been translated into 17 languages.
In this book he identifies four basic principles of problem solving.
Source: How To Solve It, by George Polya, 2nd ed., Princeton University Press, 1957.
The beauty of mathematics shows itself to patient followers.
The beauty of mathematics shows itself to patient followers.
Review
1. Fubini's theorem
If $f(x,y)$ is integrable on the rectangle \[ R = \left\{ (x,y)~|~a\leq x\leq b, c\leq y\leq d \right\}, \] then
$\displaystyle \iint_R f(x,y)~ dA = \int_a^b \int_c^d f(x,y) ~dy~dx$
$\displaystyle \qquad \qquad \;\;\;= \int_c^d \int_a^b f(x,y) ~dx~dy$
1. Fubini's theorem
$x=r\cos\theta,\\ y =r\sin \theta$ |
$x=r\cos\theta, \\y =r\sin \theta, \\z=z$ |
$x=r\cos\theta \sin \phi,\\ y =r\sin \theta\sin\phi, \\z = r \cos \phi$ |
Main results
|
|
Fundamental Theorem of Calculus
\[ \int_a^b F'(x)\,dx =F(b)-F(a) \] |
Fundamental Theorem for Line Integrals
\[ \int\limits_C \nabla f \pd d\r =f\left(\r(b)\right)-f\left(\r(a)\right) \] |
Green's Theorem
\[ \iint\limits_D\left( \frac{\partial F_2}{\partial x}- \frac{\partial F_1}{\partial y} \right) \,dA = \int\limits_C F_1\, dx + F_2 \,dy \] |
Gauss' Divergence Theorem in 2D
\[ \iint\limits_D \div \F \, dA = \int\limits_S \F \pd \n\, dS \] |
Gauss' Divergence Theorem in 3D
\[ \iiint\limits_E \div \F \, dV = \iint\limits_S \F \pd \n\, dS \] |
Stokes's Theorem
\[ \iint\limits_S \curl \F \pd \n ~dS = \int\limits_C \F \pd d\r \] |
\[ \begin{array}{l} \displaystyle \int_a^b F'(x)\,dx = F(b)-F(a)\\ \displaystyle \int\limits_C \nabla f \pd d\r =f\left(\r(b)\right)-f\left(\r(a)\right)\\ \displaystyle \iint\limits_D\left( \frac{\partial F_2}{\partial x}- \frac{\partial F_1}{\partial y} \right) \,dA = \int\limits_C F_1\, dx + F_2 \,dy\\ \displaystyle \iint\limits_D \div \F \, dA = \int\limits_S \F \pd \n\, dS\\ \displaystyle \iiint\limits_E \div \F \, dV = \iint\limits_S \F \pd \n\, dS\\ \displaystyle \iint\limits_S \curl \F \pd \n~ dS = \int\limits_C \F \pd d\r\\ \end{array} \]
We can extend these results to higher dimensions
$ \ds \int_{\partial \Omega} \omega $ $ \ds= \int_{\Omega}d\omega $
$ \ds \int_{\partial \Omega} \omega $ $ \ds= \int_{\Omega}d\omega $
The integral of some differential form
of dimension $k-1$,
over the boundary of some
orientable manifold of dimension $k$,
is equal to
the integral of its exterior derivative
over the whole of that
orientable manifold.
We can extend these results to higher dimensions
$ \ds \int_{\partial \Omega} \omega $ $ \ds= \int_{\Omega}d\omega $
The integral of some differential form
of dimension $k-1$,
over the boundary of some
orientable manifold of dimension $k$,
is equal to
the integral of its exterior derivative
over the whole of that
orientable manifold.
Design, Images & Applets
Juan Carlos Ponce Campuzano