Calculus &
Linear Algebra II

Chapter 41

41 Surface integrals

By the end of this section, you should be able to answer the following questions:

  • What is a surface integral?
  • How do you calculate the area of a parametric surface?
  • How do you use surface integrals in applications such as calculating the mass of a "surface lamina" and finding the average temperature over a surface.



41.1 Area of a parametric surface

Let $S$ be a smooth parametric surface given by

$\ds \r\left( u, v\right) = x\left( u, v\right)\i + y \left( u, v\right)\j+ z\left( u, v\right)\k$

where we assume for simplicity that the parameter domain is a rectangle in the $uv$-plane.



41.1 Area of a parametric surface

To calculate the area of $S$, we work through the following steps:

  1. Partition $S$ into small patches.
  2. Approximate each patch by a parallelogram lying in the tangent plane to the corner of the patch closest to the $u$-$v$ origin.
  3. Calculate the area $\Delta S$ of each parallelogram and add them to give an approximation to the area of $S$.
  4. Take the limit as the dimensions of $\Delta S \to 0$ to obtain an exact expression for the area.


41.1 Area of a parametric surface

1. A partition of $S$ into patches will correspond to a partition of $D$ (in the $u$-$v$ plane) into small rectangles.

The dimensions of the rectangles in $D$ will be $\Delta u\Delta v$.


41.1 Area of a parametric surface

2. Let one of the edges of a single patch be defined from parameter values $(u, v)$ to $(u+ \Delta u, v)$.


41.1 Area of a parametric surface

Using Pythagoras' law in three dimensions, we can approximate the length of this edge as

$\text{length}$ $\approx \sqrt{\left(\Delta x\right)^2 + \left(\Delta y\right)^2 + \left(\Delta z\right)^2}$
$\displaystyle = \left(\sqrt{\left(\frac{\Delta x}{\Delta u}\right)^2 + \left(\frac{\Delta y}{\Delta u}\right)^2 + \left(\frac{\Delta z}{\Delta u}\right)^2} \right) \Delta u$
$\approx \norm{\r_u}\Delta u,$

where in this case we have used $$\Delta x = x(u + \Delta u, v) -x(u, v)$$ etc (i.e., the change is only in $u$). Similarly, for an edge of patch running from parameter values $(u, v)$ to $(u, v + \Delta v)$ the length of that edge will be approximately $||\r_v||\Delta v.$


41.1 Area of a parametric surface

At the corner of the patch corresponding to parameter values $(u, v),$ we can define the two vectors $\r_u\Delta u$ and $\r_v\Delta v$ which form two sides of a parallelogram, the side lengths of which coincide with our approximations to the lengths of the edges of the patch.




41.1 Area of a parametric surface

The vector $\left(\r_u~\Delta u\right) \times \left(\r_v~\Delta v\right)$ is normal to the surface (and hence the tangent plane) at that point. Its magnitude gives the area of the parallelogram we use to approximate the area of the patch $\Delta S$. We then have \[ \Delta S \approx \norm{\r_u \times \r_v} ~\Delta u ~\Delta v. \]

Adding these approximations for each patch in $S$ gives us an approximation to the area of $S$:

area of $S$

$\displaystyle\approx \sum _i \Delta S_i$
$\displaystyle= \sum_i \norm{\r_{u_i} \times \r_{v_i}} ~\Delta u_i ~\Delta v_i.$

41.1 Area of a parametric surface

4. Finally taking the limit as $\Delta u, \Delta v \to 0$ we obtain \[ \text{surface area} = \iint_S dS = \iint_D \norm{\r_u \times \r_v} ~du ~dv. \]


41.1.1 Application: find the surface area of the paraboloid $z=1-x^2-y^2$ for $z\geq 0 $

41.1.1 Application: find the surface area of the paraboloid $z=1-x^2-y^2$ for $z\geq 0 $

Let's begin with the parametrisation of $S$. Consider $x$ and $y$ as parameters, so \[ \r(x,y) = x~\i + y~\j + \left(1-x^2-y^2\right)~\k \]

$x$ and $y$ are bounded by intersection curve of \[ z=1-x^2-y^2\quad \text{and} \quad z=0. \] That is, $x^2+y^2=1$.

So the domain for $x$ and $y$ is given by $x^2+y^2\leq 1$.



41.1.1 Application: find the surface area of the paraboloid $z=1-x^2-y^2$ for $z\geq 0 $

Thus \[ \r_x = \i-2x~\k, \quad \r_y = \j-2y~\k, \] and

$ \r_x\times\r_y = \left| \begin{array}{ccc} \i & \j & \k\\ 1 & 0 & -2x \\ 0 & 1 & -2 y \end{array} \right| $ $= 2x~\i + 2y ~\j + \k$.

Since $||\r_x\times\r_y||=\sqrt{4x^2+4y^2+1},$ then \[ dS = ||\r_x\times\r_y|| ~dx~dy = \sqrt{4x^2+4y^2+1}~dx~dy. \]



41.1.1 Application: find the surface area of the paraboloid $z=1-x^2-y^2$ for $z\geq 0 $
$\Rightarrow \text{Area}$

$\displaystyle = \iint_S dS$ $\displaystyle = \iint\limits_{x^2+y^2\leq 1} ||\r_x\times\r_y|| ~dx~dy$
$\displaystyle = \iint\limits_{x^2+y^2\leq 1} \sqrt{4x^2+4y^2+1}~dx~dy$
$\displaystyle = \int_0^{2\pi} \int_0^1 \sqrt{4r^2+1}~r~dr~d\theta$
$\displaystyle = \int_0^{2\pi} \left[ \bigg. \frac{1}{8}~\frac{2}{3} \left(4r^2+1\right)^{3/2} \bigg|_0^1 \right] d\theta$
$\displaystyle = \int_0^{2\pi} \left[ \frac{5 \sqrt{5} -1}{12} \right] d\theta$
$\displaystyle =\frac{\pi}{6} \left(5 \sqrt{5} - 1\right).$

41.2 More on calculating surface integrals, applications

Let $f(x,y,z)$ be a scalar function in $\R^3.$ We can define the surface integral of $f$ over a smooth parametric surface $S$ in $\R^3$ as \[ \iint_S f(x,y,z)~dS = \iint_D f\left(\r(u,v)\right)\norm{\r_u\times \r_v}~du~dv. \]

Surface integrals and double integrals have similar applications. Indeed, a double integral is merely a special case of a surface integral where the surface lies entirely in the $xy$-plane.




41.2 More on calculating surface integrals, applications

For example, if a thin sheet has the shape of a surface $S$ and the mass density at the point $(x, y, z)$ is $\rho(x, y, z),$ then the mass of the sheet is given by a surface integral: \[ \text{mass of sheet} = \iint_D \rho (x,y,z)~dS. \]





41.2 More on calculating surface integrals, applications

Another application is in calculating the average value of a function over a surface. Let $S$ be a smooth surface in $\R^3.$ Then the average value of the function $f(x,y,z)$ over that surface is given by \[ \text{average value over surface} = \frac{1}{\text{area of } S}\iint_S f (x,y,z)~dS. \]





41.2 More on calculating surface integrals, applications

If the surface $S$ is a closed surface, it is convention to write to represent the surface integral.






41.2 More on calculating surface integrals, applications

If $S$ is a finite union of smooth surfaces $S_1, S_2,\ldots, S_n$ that intersect only at their boundaries, then \[ \begin{multline*} \iint_S f (x,y,z)~dS = \\ \iint_{S_1} f (x,y,z)~dS + \iint_{S_2} f (x,y,z)~dS + \cdots + \iint_{S_n} f (x,y,z)~dS. \end{multline*} \] Closed surfaces are often unions of smooth surfaces as demonstrated in the following example.



41.2.1 The function $T (x, y, z) = x^2 + y^2 + z^2 + 4 $

gives the temperature at any point $(x, y, z)$ on the surface of a solid hemisphere of radius 1 centred at the origin, defined for $z\geq 0$. Find the average temperature over the surface


41.2.1 The function $T (x, y, z) = x^2 + y^2 + z^2 + 4 $

gives the temperature at any point $(x, y, z)$ on the surface of a solid hemisphere of radius 1 centred at the origin, defined for $z\geq 0$. Find the average temperature over the surface

Here we have that

$ \displaystyle \text{Average temp.} = \frac{\displaystyle\iint_S T~dS}{\text{area of }S}\qquad \qquad \qquad \qquad $

$\qquad \;\;= \frac{\displaystyle\iint_{S_1} T~dS + \iint_{S_2} T~dS }{\displaystyle\iint_{S_1} ~dS + \iint_{S_2} ~dS },$

where $S_1$ is the base and $S_2$ is the top.


41.2.1 The function $T (x, y, z) = x^2 + y^2 + z^2 + 4 $

gives the temperature at any point $(x, y, z)$ on the surface of a solid hemisphere of radius 1 centred at the origin, defined for $z\geq 0$. Find the average temperature over the surface

For $S_1$: Here we have a disk in the $xy$-plane of radius $1$. Then the parametrisation is \[ \r(x,y) = x~\i+y~\j+0~\k\quad (x^2+y^2\leq 1). \]

Then $\r_x = \i$, $\r_y = \j$ and \[ dS = \norm{\r_x\times \r_y }~dx~dy= dx~dy. \]

So $\displaystyle \iint_{S_1} T~dS = \iint_{S_1} \left( x^2+y^2+z^2+4\right)dx~dy$

or $\displaystyle \iint_{S_1} T~dS = \iint_{S_1} \left( x^2+y^2+(0)^2+4\right)dx~dy$

That is $\displaystyle \iint_{S_1} T~dS = \iint_\limits{x^2+y^2\leq 1} \left( x^2+y^2+4\right)dx~dy$.



41.2.1 The function $T (x, y, z) = x^2 + y^2 + z^2 + 4 $

gives the temperature at any point $(x, y, z)$ on the surface of a solid hemisphere of radius 1 centred at the origin, defined for $z\geq 0$. Find the average temperature over the surface

For $S_1$: Using polar coordinates \[ x = r\cos\theta , \quad y = r \sin \theta \] with $0\leq r \leq 1$ and $0\leq \theta \leq 2 \pi$, we have

$\displaystyle \iint_{S_1} T~dS $

$\displaystyle = \iint_\limits{x^2+y^2\leq 1} \left( x^2+y^2+4\right)dx~dy$
$\displaystyle = \int_0^1 \int_0^{2\pi} \left(r^2 \cos ^2 \theta + r^2 \sin^2 \theta + 4\right)r ~dr~d\theta $
$\displaystyle = \int_0^1 \int_0^{2\pi} \left(r^2 + 4\right)r ~dr~d\theta $ $\displaystyle = \frac{9 \pi}{2}$

41.2.1 The function $T (x, y, z) = x^2 + y^2 + z^2 + 4 $

gives the temperature at any point $(x, y, z)$ on the surface of a solid hemisphere of radius 1 centred at the origin, defined for $z\geq 0$. Find the average temperature over the surface

For $S_1$: Using polar coordinates \[ x = r\cos\theta , \quad y = r \sin \theta \] with $0\leq r \leq 1$ and $0\leq \theta \leq 2 \pi$, we have

$\displaystyle \iint_{S_1} T~dS $ $\displaystyle = \frac{9 \pi}{2}$.
Finally $\;\;\displaystyle \iint_{S_1}~dS $ $\displaystyle = \text{Area of the disk of radius 1}$
$=\pi (1)^2$ $= \pi$.


41.2.1 The function $T (x, y, z) = x^2 + y^2 + z^2 + 4 $

gives the temperature at any point $(x, y, z)$ on the surface of a solid hemisphere of radius 1 centred at the origin, defined for $z\geq 0$. Find the average temperature over the surface

For $S_2$: Now we have a half sphere of radius 1. Then the parametrisation is \[ \r(\theta,\phi ) = \cos\theta \sin \phi~\i+ \sin\theta \sin \phi ~\j+\cos \phi~\k \] where $0\leq \theta \leq 2 \pi$ and $0 \leq \phi \leq \pi/2$.

Then

$ \quad \r_{\theta} = -\sin\theta \sin \phi~\i+ \cos\theta \cos \phi ~\j+0~\k $

$ \quad \r_{\phi} = \cos\theta \cos \phi~\i+ \sin\theta \cos \phi ~\j- \sin \phi~\k $


41.2.1 The function $T (x, y, z) = x^2 + y^2 + z^2 + 4 $

gives the temperature at any point $(x, y, z)$ on the surface of a solid hemisphere of radius 1 centred at the origin, defined for $z\geq 0$. Find the average temperature over the surface

For $S_2$: Then

$\qquad \r_{\theta}\times\r_{\phi} = \left| \begin{array}{ccc} \i & \j & \k\\ -\sin\theta \sin \phi & \cos\theta\sin \phi & 0 \\ \cos \theta \cos \phi & \sin \theta \cos \phi & -\sin \phi \end{array} \right| $

$\qquad\quad= -\cos \theta \sin ^2 \phi ~\i - \sin \theta \sin ^2 \phi ~\j - \left(\sin ^2 \theta +\cos^2 \theta\right)\sin \phi \cos \phi ~\k$.


$\Rightarrow \norm{\r_{\theta}\times\r_{\phi} } =\sqrt{ \cos^2 \theta \sin ^4 \phi + \sin^2 \theta \sin ^4 \phi + \sin^2 \phi \cos^2 \phi }$



41.2.1 The function $T (x, y, z) = x^2 + y^2 + z^2 + 4 $

gives the temperature at any point $(x, y, z)$ on the surface of a solid hemisphere of radius 1 centred at the origin, defined for $z\geq 0$. Find the average temperature over the surface

$\norm{\r_{\theta}\times\r_{\phi} } $ $=\sqrt{ \cos^2 \theta \sin ^4 \phi + \sin^2 \theta \sin ^4 \phi + \sin^2 \phi \cos^2 \phi }$
$ =\sqrt{ \left( \cos^2 \theta + \sin^2 \theta \right) \sin ^4 \phi + \sin^2 \phi \left(1- \sin ^2\phi\right) }$
$=\sqrt{ \sin^4 \phi + \sin^2 \phi - \sin^4\phi }$
$ =\sqrt{ \sin^2 \phi }$ $= \sin \phi$

So \[ \iint_{S_2} T~dS = \iint_{S_2}\left(x^2+y^2+z^2+4\right)dS \]


41.2.1 The function $T (x, y, z) = x^2 + y^2 + z^2 + 4 $

gives the temperature at any point $(x, y, z)$ on the surface of a solid hemisphere of radius 1 centred at the origin, defined for $z\geq 0$. Find the average temperature over the surface

$\displaystyle \iint_{S_2} T~dS $ $\displaystyle = \iint_{S_2}\left(x^2+y^2+z^2+4\right)dS$
$ \displaystyle = \iint_{S_2}\left(1+4\right)dS$ $ \displaystyle = 5 \iint_{S_2}dS$
$\displaystyle = 5 \left(\text{Surface area of the half sphere}\right)$
$ =\displaystyle 5\left(\frac{1}{2}\right) \left(4 \pi \right)\left(1 \right)^2$ $= 10 \pi.$
And $\displaystyle \iint_{S_2} ~dS $ $\displaystyle = \text{Surface area of the half sphere}$
$=$ $ \displaystyle\, 2 \pi$.

41.2.1 The function $T (x, y, z) = x^2 + y^2 + z^2 + 4 $

gives the temperature at any point $(x, y, z)$ on the surface of a solid hemisphere of radius 1 centred at the origin, defined for $z\geq 0$. Find the average temperature over the surface

Therefore

$ \displaystyle \text{Average temp.} = \frac{\displaystyle\iint_{S_1} T~dS + \iint_{S_2} T~dS }{\displaystyle\iint_{S_1} ~dS + \iint_{S_2} ~dS }$

$\;\;\;\quad \displaystyle = \frac{\displaystyle \frac{9\pi}{2}+ 10 \pi}{\displaystyle \pi + 2\pi}$

$\displaystyle = \frac{29}{6}\;$.


Credits