Chapter 33
By the end of this section, you should be able to answer the following questions:
The moment of inertia of a particle of mass $m$ about an axis $(x, y, \text{ or } z)$ is defined to be $mr^2$ where $r$ is the distance from the particle to the axis.
It is sometimes referred to as rotational inertia and can be thought of as the rotational analogue of mass for linear motion. For example, linear kinetic energy can be expressed as $\frac{1}{2}mv^2,$ and the rotational kinetic energy as $\frac{1}{2}I\omega^2.$ Linear momentum is determined by the formula $p= mv,$ while angular momentum is given by $L=I\omega.$ In these examples, $I$ is the moment of inertia and $\omega$ the angular velocity.
As we have seen from previous examples, the mass of a solid with density $\rho(x, y, z)$ occupying a region $R$ in $\R^3$ is given by \[ m = \iiint_R \rho(x,y,z)~dV. \]
The moments about each of the three coordinate planes are
$\displaystyle M_{yz} = \iiint_R x~\rho(x,y,z)~dV,\;\; $ $ \displaystyle M_{xz} = \iiint_R y~\rho(x,y,z)~dV,$
$\displaystyle M_{xy} = \iiint_R z~\rho(x,y,z)~dV$
The centre of mass is then located at the point $\left(\overline{x}, \overline{y}, \overline{z}\right)$ where \[ \overline{x} = \frac{M_{yz}}{m}, \quad \overline{y} = \frac{M_{xz}}{m}, \quad\overline{z} = \frac{M_{xy}}{m} \]
The moments of inertia about each of the three coordinate axes work out to be
$\displaystyle I_{x} = \iiint_R \left(y^2+z^2\right) \rho(x,y,z)~dV,$
$\displaystyle I_{y} = \iiint_R \left(x^2+z^2\right) \rho(x,y,z)~dV,$
$\displaystyle I_{z} = \iiint_R \left(x^2+y^2\right) \rho(x,y,z)~dV.$
For $M_{xy}$, consider the following diagram:
We break down the solid (mass) into tiny boxes and compute the moment of one box about the $xy$-plane. First, we know that \[ \Delta m = \rho(x^*,y^*,z^*) \times \Delta V. \]
Then the (first) moment of the box about the $xy$-plane is
$\displaystyle \Delta m \times \text{distance (to the $xy$-plane)}$ $\approx \rho(x^*,y^*,z^*) \times \Delta V\times z^* $
Now, the (first) moment of the solid about the $xy$-plane is approximately
$ \displaystyle\sum z^*~\rho(x^*,y^*,z^*) ~\Delta V.\;\; $ If $\displaystyle \Delta V \to 0,\,$ then $\displaystyle \iiint_R z~ \rho(x,y,z)~dV$.
For $I_{x},$ consider the following diagram:
Again we break down the solid (mass) into tiny boxes. But now we consider the distance of the box to the $x$-axis. That is
$\displaystyle r = \sqrt{\left(x^*-x^*\right)^2+\left(y^*-0\right)^2+\left(z^*-0\right)^2}$ $\displaystyle = \sqrt{\left(y^*\right)^2+\left(z^*\right)^2}$
Then the moment of inertia of the box about the $x$-axis is approximately
$\displaystyle \Delta m \times r^2$ $\displaystyle = \rho(x^*,y^*,z^*) \times \Delta V\times \left(\left(y^*\right)^2+\left(z^*\right)^2\right) $
Now the moment of inertia of the solid about the $x$-axis is approximately
$ \displaystyle\sum \left(\left(y^*\right)^2+\left(z^*\right)^2\right) \rho(x^*,y^*,z^*) ~\Delta V.\;\; $
If $\displaystyle \Delta V \to 0,\,$ then $\displaystyle \iiint_R \left(y^2+z^2\right) \rho(x,y,z)~dV$.
of a solid hemisphere of radius $a$ with density proportional to the distance from the centre of the base. Find its moment of inertia about the $z$-axis.
Consider the upper hemisphere centred at the origin. We will use the spherical coordinates. We know that $\rho \propto r$, with $r$ the distance to the origin.
Take $\rho = kr,$ with $k$ a constant. Let's begin computing:
\[ \overline{x} = \frac{M_{yz}}{m}\;\; \text{ and } \;\;\overline{y} = \frac{M_{xz}}{m} \]
Consider the upper hemisphere centred at the origin. We will use the spherical coordinates. We know that $\rho \propto r$, with $r$ the distance to the origin.
Take $\rho = kr$, with $k$ a constant. Let's begin computing:
$ \displaystyle \overline{x} = \frac{\iiint_V x ~\rho ~dV}{\iiint_V \rho ~dV}\;\; \text{ and } \;\;\overline{y} = \frac{\iiint_V y~ \rho ~dV}{\iiint_V \rho ~dV} $
By simmetry of the solid about $z$-axis, we have that
$\displaystyle \iiint_V x~ \rho ~dV = 0 = \iiint_V y ~\rho ~dV.\;\;$
Then $\;\;\overline{x} = \overline{y} = 0$.
So we just need to compute $\displaystyle \;\overline{z} = \frac{\iiint_V z ~\rho ~dV}{\iiint_V \rho ~dV}$.
$\displaystyle V = \left\{ \left(r, \theta, \phi\right)~|~ 0 \leq r \leq a, 0\leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi/2 \right\}$.
$\displaystyle m$ | $\displaystyle = \iiint_V \rho ~dV $ |
$\displaystyle = \int_0^a \int_{0}^{2\pi} \int_0^{\pi/2} (k~r) ~ r^2\sin \phi ~d\phi ~d\theta ~dr$ | |
$\displaystyle = k \left( \int_0^a r^3~dr \right) \left( \int_0^{2\pi} ~d\theta \right) \left( \int_0^{\pi/2} \sin \phi~d\phi \right)$ | |
$\displaystyle = k \left( \frac{a^4}{4} \right) \left(2\pi \right) \left( 1 \right)$ $\displaystyle = \large \frac{\pi k a^4}{2}$. |
$\displaystyle \iiint_V z ~\rho ~dV$ | $\displaystyle = \iiint_V (r \cos \phi) ~ (k ~r) ~dV $ $\displaystyle = \iiint_V k ~r^2 \cos \phi ~dV $ |
$\displaystyle = \int_0^a \int_{0}^{2\pi} \int_0^{\pi/2}k~r^2\cos \phi ~ r^2\sin \phi ~d\phi ~d\theta ~dr$ | |
$\displaystyle = k \left( \int_0^a r^4~dr \right) \left( \int_0^{2\pi} ~d\theta \right) \left( \int_0^{\pi/2} \cos \phi \sin \phi~d\phi \right)$ | |
$\displaystyle = k \left( \frac{a^5}{5} \right) \left(2\pi \right) \left( \frac{1}{2} \right)$ $\displaystyle = \large \frac{\pi ~k ~a^5}{5}$. |
Then we have that
$\displaystyle \overline{z}= \dfrac{\dfrac{\pi k a^5}{5}}{\dfrac{\pi k a^4}{2}}$ $\displaystyle = \frac{2}{5}a$.
Therefore \[ \left(\overline{x}, \overline{y}, \overline{z}\right) = \left(0, 0, \frac{2}{5}a\right). \]
We need to compute \[ I_z = \iiint_V\left(x^2+y^2\right)\rho~ dV. \]
In spherical coordinates we have
$x^2+y^2$ $=r^2 \cos^2 \theta \sin^2 \phi + r^2 \sin^2 \theta \sin^2 \phi$ $=r^2 \sin^2 \phi$.
$\displaystyle I_z$ | $\displaystyle =\iiint_V\left(x^2+y^2\right)\rho~ dV$ |
$\displaystyle = \int_0^a \int_{0}^{2\pi} \int_0^{\pi/2}\left( r^2\sin^2 \phi \right) \left(k ~r\right) ~r^2\sin \phi ~d\phi ~d\theta ~dr$ | |
$\displaystyle = k \left( \int_0^a r^5~dr \right) \left( \int_0^{2\pi} ~d\theta \right) \left( \int_0^{\pi/2} \sin^3 \phi~d\phi \right)$ | |
$\displaystyle = k \left( \frac{a^6}{6} \right) \left(2\pi \right) \left( \frac{2}{3} \right)$ $\displaystyle = \frac{2~\pi ~k ~a^6}{9}$. |