Calculus &
Linear Algebra II

Chapter 32

32 Spherical coordinates

By the end of this section, you should be able to answer the following questions:

  • What is the relationship between rectangular coordinates and spherical coordinates?
  • How do you transform a triple integral in rectangular coordinates into one in terms of spherical coordinates?
  • What is the Jacobian of the transformation?




32 Spherical coordinates

Sometimes it is useful to use spherical coordinates in order to simplify the integral. This involves the transformation \[ x= r\cos \theta \sin \phi ,\quad y=r\sin \theta \sin \phi , \quad z = r \cos \phi. \qquad (15) \]

In this case $\theta$ is longitude, $\phi$ is co-latitude, and $r$ the distance from the origin.




32 Spherical coordinates

$x= r\cos \theta \sin \phi ,\quad y=r\sin \theta \sin \phi , \quad z = r \cos \phi. \qquad (15)$


32 Spherical coordinates

We now aim to calculate a small element of volume of a spherical shell. This will then show how in a triple integral we can transform from rectangular coordinates to spherical coordinates by substituting the transformation (15) and by making the change \[ dx~dy~dz\rightarrow r^2\sin \phi ~dr~d\theta ~d\phi \]

Consider the following diagram.





32 Spherical coordinates



32 Spherical coordinates



32 Spherical coordinates

The important result is that the triple integral in rectangular coordinates transforms as follows:

$\displaystyle \iiint_\limits{R} f(x,y,z) ~dx~dy~dz $

$\displaystyle =\iiint_\limits{S} f\left(r\cos \theta \sin \phi, r \sin \theta \sin \phi, r\cos \phi \right) r^2\sin \phi ~dr~d\theta ~d\phi.$




32.1 A simple example:

Find the volume of a sphere of radius $R$.



32.1 A simple example:

Find the volume of a sphere of radius $R$.

Recall that \[ \text{Volume } = \iiint_V ~dV. \]

We describe the sphere as: \[ 0 \leq r \leq R, \; 0\leq \theta \leq 2 \pi, \; 0\leq \phi \leq \pi. \]

Then \[ V= \{(r,\theta, \phi), ~|~ 0 \leq r \leq R, \; 0\leq \theta \leq 2 \pi, \; 0\leq \phi \leq \pi\}. \]


32.1 A simple example:

Find the volume of a sphere of radius $R.$

$\text{V } $ $\displaystyle = \iiint_V dV $ $\displaystyle = \int_{\phi=0}^{\phi=\pi} \int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=R} $ $\displaystyle r^2\sin \phi ~dr~d\theta~ d\phi$
$\displaystyle = \left( \int_{\phi=0}^{\phi=\pi} \sin\phi ~d\phi \right) \left( \int_{\theta=0}^{\theta=2\pi}~d\theta \right)\left( \int_{r=0}^{r=R}r^2~dr\right)$
$\displaystyle = \left( -\cos\phi \Bigg|_{\phi=0}^{\phi=\pi} \right) \left( \theta\Bigg|_{\theta=0}^{\theta=2\pi} \right)\left( \frac{r^3}{3}\Bigg|_{r=0}^{r=R}\right)$
$\displaystyle = \large 2 ~(2 \pi) \left( \frac{R^3}{3}\right)$ $\displaystyle = \large \frac{4}{3} \pi R^3.$

32.2 Find the mass of a sphere of radius $R$

whose density is given by $\rho (x,y,z) = e^{-\left(x^2+y^2+z^2\right)^{1/2}}.$

Recall that $$\displaystyle \iiint_V \rho(x,y,z)~ dV = \iiint_V e^{-\left(x^2+y^2+z^2\right)^{1/2}}~dV.$$

We can't compute this integral in rectangular coordinates! 😥

Let's use spherical coordinates:

$\ds x= r\cos \theta \sin \phi ,\quad y=r\sin \theta \sin \phi , \quad z = r \cos \phi. $



32.2 Find the mass of a sphere of radius $R$

whose density is given by $\rho (x,y,z) = e^{-\left(x^2+y^2+z^2\right)^{1/2}}.$

Then we have that

$x^2+y^2+z^2 $ $= r^2 \cos^2\theta \sin^2\phi + r^2 \sin^2\theta \sin^2\phi + r^2 \cos^2 \phi$
$= r^2 \left(\cos^2\theta + \sin^2\theta \right) \sin^2\phi + r^2 \cos^2 \phi$
$= r^2 \sin^2\phi + r^2 \cos^2 \phi$ $= r^2$.

Thus $\rho(r,\theta, \phi) = e^{-r}$.

Finally, the region $V$ is described by: \[ 0 \leq r \leq R, \; 0\leq \theta \leq 2 \pi, \; 0\leq \phi \leq \pi. \]


32.2 Find the mass of a sphere of radius $R$

whose density is given by $\rho (x,y,z) = e^{-\left(x^2+y^2+z^2\right)^{1/2}}.$

$\text{Mass}$ $\displaystyle =\iiint_V \rho~ dV $ $\displaystyle =\iiint_V e^{-r} ~dV $
$\displaystyle =\int_{\phi=0}^{\phi=\pi} \int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=R} e^{-r}$ $r^2\sin\phi ~dr~d\theta~d\phi$
$\displaystyle = \left(\int_{\phi=0}^{\phi=\pi}\sin \phi~d\phi \right) \left(\int_{\theta=0}^{\theta=2\pi}~d\theta \right)\left(\int_{r=0}^{r=R}r^2e^{-r}~dr\right) $
$\displaystyle = 2~ (2 \pi ) \int_{r=0}^{r=R}r^2e^{-r}~dr $ $\displaystyle = 4 {\large \pi} \int_{r=0}^{r=R}r^2e^{-r}~dr $


32.2 Find the mass of a sphere of radius $R$

The challenge is now to compute: $\displaystyle \int_{r=0}^{r=R}r^2e^{-r}~dr.$

Recall the technique Integration by parts.

Consider the functions $u,$ $v.$ Using the product rule we have

$d(uv) = u ~dv + v ~du $ $\implies u~dv = d(uv) - v~du$ $$\implies \int u~dv = uv - \int v~du$$




32.2 Find the mass of a sphere of radius $R$

Take $u = r^2$ and $dv= e^{-r}~dr.$ So $du = 2r ~dr$ and $v = -e^{-r}.$

$\displaystyle \int_{r=0}^{r=R}\underbrace{r^2}_{u}\overbrace{e^{-r}~dr}^\text{$dv$} $ $\displaystyle = \underbrace{r^2}_\text{$u$}\overbrace{\left(-e^{-r}\right)}^\text{$v$}\Bigg|_{r=0}^{r=R} - \int_{r=0}^{r=R}\underbrace{\left(-e^{-r}\right)}_\text{$v$}\overbrace{(2r)~dr}^\text{$du$}$
$\displaystyle = -R^2e^{-R} +2 \int_{r=0}^{r=R}re^{-r}~dr\qquad$ $($A$)$




32.2 Find the mass of a sphere of radius $R$

Now take $u = r$ and $dv= e^{-r}~dr.$ So $du = dr$ and $v = -e^{-r}.$

$\quad\quad($A$)$ $\displaystyle = -R^2e^{-R} +2 \left[ -re^{-r}\Bigg|_{r=0}^{r=R} - \int_{r=0}^{r=R}\left(-e^{-r}\right)sr \right]$
$\displaystyle = -R^2 e^{-R} - 2R e^{-R} + 2 \int_{r=0}^{r=R}e^{-r}~dr$
$\displaystyle = -R^2 e^{-R} - 2R e^{-R} + 2 \left[ -e^{-r}\Bigg|_{r=0}^{r=R}\right]$
$\displaystyle =-R^2 e^{-R} - 2R e^{-R} + 2\left[ -e^{-R}+1 \right]$
$\displaystyle = 2 - 2e^{-R} - 2Re^{-R} - R^2e^{-R}$
$\displaystyle = 2 - e^{-R} \left( R^2+2R+2 \right)$.

32.2 Find the mass of a sphere of radius $R$

whose density is given by $\rho (x,y,z) = e^{-\left(x^2+y^2+z^2\right)^{1/2}}$.

Therefore

$\text{Mass}$ $\displaystyle =\iiint_V \rho ~dV $ $\displaystyle =\iiint_V e^{-r}~ dV $
$\displaystyle = 4 {\large \pi } \int_{r=0}^{r=R}r^2e^{-r}~dr $
$\displaystyle = 4 {\large \pi }\left[2 - e^{-R} \left( R^2+2R+2 \right)\right]. $



32.3 Find the volume of the "ice cream cone" $R$

between a sphere of radius $a$ (centred at the origin) and the cone $z=\sqrt{x^2+y^2}$.


32.3 Find the volume of the "ice cream cone" $R$

Let's use spherical coordinates \[ x = r\cos \theta \sin \phi, \quad y = r \sin \theta \sin \phi, \quad z = r \cos \phi. \]

First, the bounds for $r$ and $\theta$ are: \[ 0\leq r \leq a, \qquad 0 \leq \theta \leq 2 \pi. \]

For the bounds for $\phi$ we need consider the cone $z= \sqrt{x^2+y^2}$. Then

$\displaystyle \quad \quad z $ $= \sqrt{x^2+y^2}$ $\displaystyle =\sqrt{ r^2\cos^2 \theta \sin^2 \phi + r^2 \sin^2 \theta \sin^2 \phi }$
$r \cos \phi$ $\displaystyle =\sqrt{ r^2\sin^2 \phi \left( \cos^2 \theta + \sin^2 \theta\right) }$ $= r\sin \phi$

32.3 Find the volume of the "ice cream cone" $R$

The bounds for $r$ and $\theta$ are: \[ 0\leq r \leq a, \qquad 0 \leq \theta \leq 2 \pi. \]

And

$r \cos \phi$ $= r\sin \phi$
$\;\; \tan \phi$ $= 1,$ with $r\neq 0.$

This implies that $\phi = \dfrac{\pi}{4}.$ Then $0\leq \phi \leq \dfrac{\pi}{4},$ Thus \[ E = \left\{ \left(r, \theta, \phi\right) ~|~ 0\leq r \leq a, 0 \leq \theta \leq 2 \pi, 0\leq \phi \leq \dfrac{\pi}{4}\right\}. \]


32.3 Find the volume of the "ice cream cone" $R$

$\text{V}$ $\displaystyle = \iiint_E~ dV$
$\displaystyle = \int_{\phi=0}^{\phi =\pi/4} \int_{\theta=0}^{\theta =2\pi} \int_{r=0}^{r = a} r^2\sin\phi ~dr ~d\theta ~d\phi$
$\displaystyle = \left( \int_{\phi=0}^{\phi= \pi/4} \sin\phi ~d\phi \right) \left( \int_{\theta=0}^{\theta= 2\pi} ~d\theta \right) \left( \int_{r=0}^{r = a}r^2~dr \right) $
$\displaystyle = \left( 1 - \frac{\sqrt{2}}{2} \right) \left(2 {\large \pi} \right) \left( \frac{a^3}{3} \right) $ $\displaystyle = \left( 1 - \frac{\sqrt{2}}{2} \right) \frac{2 {\large \pi} a^3}{3} . $


Credits