Calculus &
Linear Algebra II

Chapter 28

28 Double integrals in polar coordinates

By the end of this section, you should be able to answer the following questions:

  • What is the relationship between polar coordinates and rectangular coordinates?
  • How do you transform a double integral in rectangular coordinates into one in terms of polar coordinates?
  • What is the Jacobian of the transformation?


28 Double integrals in polar coordinates

For annular regions with circular symmetry, rectangular coordinates are difficult. It can be more convenient to use polar coordinates. The following diagram explains the relationship between the polar variables $r,$ $\theta$ and the usual rectangular ones $x, y$.



Polar transformation

Drag the silder on the top-right corner











28 Double integrals in polar coordinates

For polar coordinates, we have \[ x = r\cos \theta, \quad y = r \sin \theta. \]

Consider the volume of a solid beneath a surface $z = f(x,y)$ and above a circular region in the $x$-$y$ plane.





28 Double integrals in polar coordinates

We first approximate the area of each polar rectangle as a regular rectangle. We do this as follows. Choose a point $P$ inside each polar rectangle in the polar grid. Let $P = (x^*, y^*)$ or in polar coordinates $P = (r^*, \theta^*)$ , where \[ x^* = r^*\cos \theta^*, \;\; y^* = r^* \sin \theta^*. \]

The area of the polar rectangle containing $P$ can be approximated as $r^*~\Delta \theta ~\Delta r$.

We divide the region into a polar grid as in the following diagram:


28 Double integrals in polar coordinates

Therefore the volume under the surface and above each polar rectangle can be approximated as \[ \text{vol. on box} \approx r^*~ \Delta \theta ~\Delta r ~f\left( r^*\cos \theta^*, r^* \sin \theta^* \right). \]

Here $f\left( r^*\cos \theta^*, r^* \sin \theta^* \right)$ is the value of the function at the point $P$, which is also the height of the box used in the approximation.



28 Double integrals in polar coordinates

To obtain an approximation for the entire volume below the surface, we sum over the entire polar grid:

$\text{vol.} \approx \displaystyle \sum_{(\text{polar grid})} r^*~\Delta \theta ~\Delta r ~f\left( r^*\cos \theta^*, r^* \sin \theta^* \right)\quad \;$

$\Rightarrow \text{vol.} = \displaystyle \lim_{\Delta r, \Delta \theta \to 0} \sum_{(\text{polar grid})} r^*~\Delta \theta ~\Delta r ~f\left( r^*\cos \theta^*, r^* \sin \theta^* \right)$

$= \displaystyle \iint_\limits{D} f\left( r \cos \theta , r \sin \theta \right)r ~dr~d\theta.\qquad \quad\;\;\, $


28 Double integrals in polar coordinates

The double integral in rectangular coordinates is then transformed as follows: \[ \iint_\limits{R} f(x,y)~dx~dy = \iint_\limits{S} f\left( r \cos \theta , r \sin \theta \right)r ~dr~d\theta. \]





28.1 Example: Find $\iint_D e^{-\left(x^2 + y^2 \right)}~dx~dy$

where $D$ is the region bounded by the circle $x^2+y^2=R^2$.



28.1 Example: Find $\iint_D e^{-\left(x^2 + y^2 \right)}~dx~dy$ (cont.)

🤔 Unfortunately, we cannot evaluate this integral in rectangular coordinates.

We need to use polar coordinates: $x= r\cos\theta,$ $y=r\sin \theta$.

This implies that $x^2+y^2 = r^2$. So \[ \iint_\limits{D}e^{-\left(x^2 + y^2 \right)}~dx~dy = \iint_\limits{D} e^{-r^2} r ~dr~d\theta. \]




28.1 Example: Find $\iint_D e^{-\left(x^2 + y^2 \right)}~dx~dy$ (cont.)

The region $D$ can be described in polar coordinates. That is: $$0\leq r \leq R \;\text{ and } \;0 \leq \theta \leq 2\pi.$$

Then $D = \left\{ \left( r, \theta \right) ~|~ 0\leq r \leq R,0 \leq \theta \leq 2\pi \right\}$.

$\displaystyle\iint_{D} e^{-r^2}\cdot r ~dr~d\theta $ $\displaystyle= \int_{\theta=0}^{\theta = 2\pi} \int_{r=0}^{r=R} e^{-r^2} \cdot r ~dr~d\theta $
$\displaystyle =\left( \int_{\theta=0}^{\theta = 2\pi} d \theta \right) \left( \int_{r=0}^{r=R} e^{-r^2}r~ d r\right)$
$\displaystyle = \large \pi\left( 1- e^{-R^2}\right). $

28.2 Example: Find the volume

bounded by the plane $z=0$ and the paraboloid $z=1-x^2-y^2.$



28.2 Example: Find the volume (cont.)

😃 We can evaluate this integral in rectangular and polar coordinates.

Let's use polar coordinates: $x= r\cos\theta,$ $y=r \sin \theta.$

This implies that our surface is defined as $1-x^2-y^2 = 1-r^2,$ and the domain $D$ is region inside the circle \[ x^2+y^2=1 \] which is determined by intersecting $z=0$ and $z=1-x^2-y^2.$



28.2 Example: Find the volume (cont.)

Thus we have that $$0\leq r \leq 1 \;\text{ and } \;0 \leq \theta \leq 2\pi$$

So $D = \left\{ \left( r, \theta \right) ~|~ 0\leq r \leq 1,0 \leq \theta \leq 2\pi \right\}$.

$\displaystyle \text{Volume}$ $\displaystyle=\iint_{D} \left(1-x^2-y^2 \right)dA $ $\displaystyle= \iint_{D} \left(1-r^2 \right)r ~dr~d\theta $
$\displaystyle =\int_{\theta=0}^{\theta = 2\pi} \int_{r=0}^{r=1} \left(1-r^2 \right)r ~dr~d\theta $
$\displaystyle =\left( \int_{\theta=0}^{\theta = 2\pi} d \theta \right) \left( \int_{r=0}^{r=1} \left(r-r^3 \right) d r\right)$ $\displaystyle =\large \frac{\pi}{2} . $


28.3 Example: Find the volume

of the solid that lies under the paraboloid $z=x^2+y^2$ and
inside the cylinder $x^2+y^2=2x$, for $z\geq 0$.



28.3 Example: Find the volume (cont.)

First, we need to find the boundary.

If we complete the square in $x^2+y^2=2x,$ we obtain \[ (x-1)^2+y^2=1. \]

This is the cylinder centred at $(1,0)$ with radius $1$. In this example the domain is defined by the expression \[ x^2+y^2=2x. \]

Again it is simpler to use polar coordinates.



28.3 Example: Find the volume (cont.)

Thus, substituing the values $\,x= r\cos\theta\,$ and $\,y=r\sin \theta\,$ in $$x^2+y^2=2x,$$ we get $r^2\cos ^2\theta +r^2\sin ^2\theta = 2r \cos \theta$. That is $$ r^2 = 2r \cos \theta \Rightarrow r = 2 \cos \theta \qquad (r\neq 0).$$

Thus $$D = \left\{ \left( r, \theta \right) ~|~ 0\leq r \leq 2\cos \theta, -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \right\}.$$



28.3 Example: Find the volume (cont.)

$\ds \cos^2 B = \frac{1}{2}\big(1+\cos \left(2B\right)\big)\qquad\qquad\;\; $

$\ds 4\cos^4 B = \big(1+\cos \left(2B\right)\big)^2\qquad \qquad\quad $

$\ds\;\;\quad = \frac{3}{2}+2\cos \left(2B\right) + \frac{1}{2}\cos \left(4B\right)$

$\text{V}$ $\displaystyle =\iint_{D} \left(x^2+y^2 \right)dA $ $\displaystyle= \iint_{D} r^2r ~dr~d\theta $

$\;\,\, \displaystyle =\int_{\theta=-\frac{\pi}{2}}^{\theta = \frac{\pi}{2}} \int_{r=0}^{r=2\cos \theta} r^3 ~dr~d\theta $

$\;\,\,\displaystyle =\int_{\theta=-\frac{\pi}{2}}^{\theta = \frac{\pi}{2}} \left[ \frac{r^4}{4} \Bigg|_{r=0}^{r=2\cos \theta} \right] d\theta $ $\displaystyle = \int_{\theta=-\frac{\pi}{2}}^{\theta = \frac{\pi}{2}} 4\cos^4 \theta~ d\theta $

$\;\,\,\displaystyle = \int_{\theta=-\frac{\pi}{2}}^{\theta = \frac{\pi}{2}} \left( \frac{3}{2} + 2 \cos \left(2 \theta\right) + \frac{1}{2} \cos \left(4 \theta\right) \right) d\theta $

$\;\,\,\displaystyle = \left[\frac{3}{2}\theta +\sin\left(2 \theta\right)+\frac{1}{8}\sin\left(4 \theta\right)\right] \Bigg|_{\theta=-\frac{\pi}{2}}^{\theta=\frac{\pi}{2}}$ $\displaystyle = \large \frac{3\pi}{2} .\qquad \qquad\qquad$


Credits