Chapter 16
By the end of this section, you should be able to answer the following questions:
A square matrix $A$ is diagonalisable if there is a non-singular matrix $P$ such that $P^{-1}AP$ is a diagonal matrix. Here we consider the question: given a matrix, is it diagonalisable? If so, how do we find $P$?
The secret to constructing such a $P$ is to let the columns of $P$ be the eigenvectors of $A$. We immediately have that $AP=PD,$ where $D$ is a diagonal matrix with eigenvalues on the diagonal. We know from section 15.1 that $P$ is invertible if and only if the columns of $P$ are linearly independent.
Hence, we have the following result:
The $n\times n$ matrix $A$ is diagonalisable if and only if $A$ has $n$ linearly independent eigenvectors.
Is the matrix
$A=\left(\begin{array}{rrr}-3&1&0\\1&-2&1\\0&1&-3\end{array}\right)$
diagonalisable?
We know this matrix has eigenvalues $-3, -1, -4,$ with corresponding eigenvectors
$\v_1=\mat{r}{1\\0\\-1},\;$ $\;\v_2=\mat{c}{1\\2\\1},\;$ $\;\v_3=\mat{r}{1\\-1\\1}$.
We form the matrix
$\ds P=\left(\begin{array}{rrr}1&1&1\\0&\; 2&-1\\-1&1&1\end{array}\right) $
whose columns are these eigenvectors.
$A=\left(\begin{array}{rrr}-3&1&0\\1&-2&1\\0&1&-3\end{array}\right)$
$\;A=\left(\begin{array}{rrr}-3&1&0\\1&-2&1\\0&1&-3\end{array}\right)\,\;$ and $\;\ds P=\left(\begin{array}{rrr}1&1&1\\0&\; 2&-1\\-1&1&1\end{array}\right) $
We can check directly that $P^{-1}AP=D,$ where $$\left(\begin{array}{rrr}-3&0&0\\0&-1&0\\0&0&-4\end{array}\right)=D$$ is a diagonal matrix with the eigenvalues on the diagonal.
So steps for diagonalising an $n\times n$ matrix $A$:
Two matrices $A$ and $B$ are similar if there is a non-singular matrix $P$ such that $B=P^{-1}AP.$
The statements "$A$ is diagonalisable" and "$A$ is similar to a diagonal matrix" are equivalent.
16.1.1 Theorem (similar matrices)
Similar matrices have the same eigenvalues.
16.1.1 Theorem (similar matrices)
Similar matrices have the same eigenvalues.
In fact, if $B=P^{-1}AP$ and $\v$ is an eigenvector of $A$ corresponding to eigenvalue $\lambda,$ then $P^{-1}\v$ is an eigenvector of $B$ corresponding to eigenvalue $\lambda$. This is because
$B\left(P^{-1}\v\right)$ | $=$ | $\left(P^{-1}AP\right)P^{-1}\v$ |
$=$ | $ P^{-1}\left(A\v\right)$ | |
$=$ | $P^{-1}\left(\lambda \v\right)$ | |
$=$ | $\lambda \left(P^{-1}\v\right)$ |
Let the matrix $A$ be $n\times n$ with $n$ linearly independent eigenvectors $\v_1,\dots, \v_n$ corresponding to eigenvalues $\lambda_1,\dots,\lambda_n.$ Let $$ P=(\v_1| \dots |\v_n) $$ be the $n\times n$ matrix whose columns are the eigenvectors. Then $$ P^{-1}AP=\left(\begin{array}{cccc} \lambda_1&0&\cdots&0\\0&\lambda_2&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&\lambda_n\end{array}\right), $$ the diagonal matrix with the eigenvalues down the main diagonal.
Let the matrix $A$ be $n\times n$ with $n$ linearly independent eigenvectors $\v_1,\dots, \v_n$ corresponding to eigenvalues $\lambda_1,\dots,\lambda_n.$ Let $$ P=(\v_1| \dots |\v_n) $$ be the $n\times n$ matrix whose columns are the eigenvectors. Then $$ P^{-1}AP=\left(\begin{array}{cccc} \lambda_1&0&\cdots&0\\0&\lambda_2&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&\lambda_n\end{array}\right), $$ the diagonal matrix with the eigenvalues down the main diagonal.
We know that an $n\times n$ matrix $A$ is diagonalisable if and only if $A$ has $n$ linearly independent eigenvectors.
Now say $\lambda_1,\dots,\lambda_m$ are distinct eigenvalues of $A$, with corresponding eigenvectors $\v_1,\dots,\v_m.$ Then we have also seen that $\v_1,\dots,\v_m$ are linearly independent.
Hence if $A$ is $n\times n$ with $n$ distinct eigenvalues, then $A$ is diagonalisable.
The question remains, if $A$ has fewer than $n$ distinct eigenvalues, how do we know if $A$ is diagonalisable?
Let $A=\left(\begin{array}{ccc}2&1&3\\0&1&0\\0&0&1\end{array}\right)$ and $B=\left(\begin{array}{ccc}2&1&3\\0&1&1\\0&0&1\end{array}\right)$.
Easy to see the characteristic equation of both $A$ and $B$ is $$(2-\lambda)(1-\lambda)^2=0,$$ so $\lambda=2,1,1.$
Let $A=\left(\begin{array}{ccc}2&1&3\\0&1&0\\0&0&1\end{array}\right)$ and $B=\left(\begin{array}{ccc}2&1&3\\0&1&1\\0&0&1\end{array}\right).$ Characteristic equation of both $A$ and $B$ is $(2-\lambda)(1-\lambda)^2=0,$ so $\lambda=2,1,1.$
Note that both matrices have two ($n\lt 3$) distinct eigenvalues.
For $A:$ We have that for $\lambda=2$
$\ds \left(A-\lambda I\right)\mathbf x $ $= \left( \begin{array}{rrr} 0 & 1 & 3 \\ 0 & -1 &0 \\ 0 & 0 & -1 \\ \end{array} \right) \left( \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right) $ $ =\left( \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) $
$\Ra$ $x_3 = x_2 = 0,$ which means that $x_1$ is free variable.
Thus $ \left( \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right) =\left( \begin{array}{c} x_1 \\ 0 \\ 0 \\ \end{array} \right) $ $ =x_1 \left( \begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array} \right). $ The eigenvector is $\v_1 = \left( \begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array} \right). $
For $A:$ Now for $\lambda=1$
$\ds \left(A-\lambda I\right)\mathbf x= \left( \begin{array}{ccc} 1 & 1 & 3 \\ 0 & 0 &0 \\ 0 & 0 & 0 \\ \end{array} \right) \left( \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right) =\left( \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) $ $\;\Ra\;$ $\;x_1+x_2+3x_3=0.$
So $\;x_1=-x_2-3x_3$. Thus $\; \left( \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right) =\left( \begin{array}{c} -x_2-3x_3 \\ x_2 \\ x_3 \\ \end{array} \right) $ $ =x_2 \left( \begin{array}{c} -1 \\ 1 \\ 0 \\ \end{array} \right) + x_3 \left( \begin{array}{c} -3 \\ 0 \\ 1 \\ \end{array} \right). $
The eigenvectors are $\v_2 = \left( \begin{array}{c} -1 \\ 1 \\ 0 \\ \end{array} \right) $ and $\v_3 = \left( \begin{array}{c} -3 \\ 0 \\ 1 \\ \end{array} \right). $
$A=\left(\begin{array}{ccc}2&1&3\\0&1&0\\0&0&1\end{array}\right)$
Therefore $A$ is diagonalisable, since $A$ has three linearly independent vectors.
|
Let $A=\left(\begin{array}{ccc}2&1&3\\0&1&0\\0&0&1\end{array}\right)$ and $B=\left(\begin{array}{ccc}2&1&3\\0&1&1\\0&0&1\end{array}\right).$ Characteristic equation of both $A$ and $B$ is $(2-\lambda)(1-\lambda)^2=0,$ so $\lambda=2,1,1.$
Now for $B:$ We have that for $\lambda=2$
$\ds \left(A-\lambda I\right)\mathbf x $ $= \left( \begin{array}{rrr} 0 & 1 & 3 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \\ \end{array} \right) \left( \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right) $ $ =\left( \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) $
$\Ra$ $x_2 = x_3 = 0,$ which means that $x_1$ is free variable.
Thus $ \left( \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right) =\left( \begin{array}{c} x_1 \\ 0 \\ 0 \\ \end{array} \right) $ $ =x_1 \left( \begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array} \right). $ The eigenvector is $\v_1 = \left( \begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array} \right). $
Now for $B:$ On the other hand, for $\lambda=1$
$\ds \left(A-\lambda I\right)\mathbf x $ $= \left( \begin{array}{ccc} 1 & 1 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{array} \right) \left( \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right) $ $ =\left( \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) $
$\Ra$ $x_3 = 0,$ and then $x_1+x_2+ 3x_3=0.$
Thus $ \left( \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right) =\left( \begin{array}{r} x_1 \\ -x_1 \\ 0 \\ \end{array} \right) $ $ =x_1 \left( \begin{array}{r} 1 \\ -1 \\ 0 \\ \end{array} \right). $ The eigenvector is $\v_2 = \left( \begin{array}{r} 1 \\ -1 \\ 0 \\ \end{array} \right). $
$B=\left(\begin{array}{ccc}2&1&3\\0&1&1\\0&0&1\end{array}\right).$
Therefore $B$ is NOT diagonalisable, since $B$ has only two linearly independent vectors.
|
If we are only interested in finding out whether or not a matrix is diagonalisable, then we need to know the dimension of each eigenspace. There is one theorem (which we will not prove!) that states:
If $\lambda_i$ is an eigenvalue, then the dimension of the corresponding eigenspace cannot be greater than the number of times $(\lambda-\lambda_i)$ appears as a factor in the characteristic polynomial.
We often use the following terminology:
The main result is the following:
A square matrix is diagonalisable if and only if the geometric and algebraic multiplicities are equal for every eigenvalue.
16.5.1 Systems of differential equations
For a system of coupled differential equations which can be written in matrix form as $$ \dot{\mathbf x}=A{\mathbf x} $$ (where ${\mathbf x}=(x_1,\dots,x_n)^T,$ $\dot{\mathbf x}=(\dot x_1,\dots,\dot x_n)^T$), if $A$ can be diagonalised, say $P^{-1}AP=D$ with $D$ diagonal, then make the substitution ${\mathbf x}=P{\mathbf y}.$ This yields $$ \dot{\mathbf y}=D{\mathbf y} $$ which is easily solved.
16.5.1 Systems of differential equations
For a system of coupled differential equations $ \dot{\mathbf x}=A{\mathbf x}, $ if $A$ can be diagonalised, say $P^{-1}AP=D$ with $D$ diagonal, then make the substitution ${\mathbf x}=P{\mathbf y}.$ This yields $ \dot{\mathbf y}=D{\mathbf y} $ which is easily solved.
For example, consider the coupled system of ODEs: \[ \left\{ \begin{array}{rcrcr} \dot x_1 & = & x_1 & + & 2x_2\\ \dot x_2 & = & 2x_1 & + & x_2\\ \end{array} \right. \] Write $ \left( \begin{array}{r} \dot x_1 \\ \dot x_2 \\ \end{array} \right) = \left( \begin{array}{cc} 1 & 2\\ 2 & 1\\ \end{array} \right) \left( \begin{array}{r} x_1 \\ x_2 \\ \end{array} \right)\; $ or $\; \dot{\mathbf x} = A \mathbf x.$ $\quad (\star)$
Is $A$ diagonalizable? 🤔 The answer is "Yes". $\;\Ra \; P^{-1}A P = D.$
16.5.1 Systems of differential equations
For a system of coupled differential equations $ \dot{\mathbf x}=A{\mathbf x}, $ if $A$ can be diagonalised, say $P^{-1}AP=D$ with $D$ diagonal, then make the substitution ${\mathbf x}=P{\mathbf y}.$ This yields $ \dot{\mathbf y}=D{\mathbf y} $ which is easily solved.
Write $ \left( \begin{array}{r} \dot x_1 \\ \dot x_2 \\ \end{array} \right) = \left( \begin{array}{cc} 1 & 2\\ 2 & 1\\ \end{array} \right) \left( \begin{array}{r} x_1 \\ x_2 \\ \end{array} \right)\; $ or $\; \dot{\mathbf x} = A \mathbf x.$ $\quad (\star)$
Is $A$ diagonalizable? 🤔 The answer is "Yes". $\;\Ra \; P^{-1}A P = D.$
From $\,(\star)\,$ we have
$P^{-1}\dot{\mathbf x}$ $= P^{-1}A \mathbf x$ $= P^{-1}A I {\mathbf x}$ $= P^{-1}A P P^{-1}{\mathbf x}$ $= D P^{-1}{\mathbf x}.$
Thus $ \quad \ds \frac{d}{dt}\left(P^{-1}\mathbf x \right)= D \left(P^{-1}\mathbf x\right)\qquad (\star \star) $
16.5.1 Systems of differential equations
For a system of coupled differential equations $ \dot{\mathbf x}=A{\mathbf x}, $ if $A$ can be diagonalised, say $P^{-1}AP=D$ with $D$ diagonal, then make the substitution ${\mathbf x}=P{\mathbf y}.$ This yields $ \dot{\mathbf y}=D{\mathbf y} $ which is easily solved.
$ \dfrac{d}{dt}\left(P^{-1}\mathbf x \right) = D \left(P^{-1}\mathbf x\right)\qquad (\star \star) $
Introducing the expression $ \mathbf y(t) = \left( \begin{array}{r} y_1(t) \\ y_2(t) \\ \end{array} \right) = P^{-1}\mathbf x,\, $ implies
$\dot{\mathbf y} = D \mathbf y\;$ (from $\;(\star \star)$)
$\;\Ra\; \left( \begin{array}{r} \dot y_1(t) \\ \dot y_2(t) \\ \end{array} \right) = \left( \begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2\\ \end{array} \right) \left( \begin{array}{r} y_1(t) \\ y_2(t) \\ \end{array} \right) $
$\Ra\; \dot y_1 = \lambda_1y_1\;$ and $\; \dot y_2 = \lambda_2y_2.\qquad $
16.5.1 Systems of differential equations
For a system of coupled differential equations $ \dot{\mathbf x}=A{\mathbf x}, $ if $A$ can be diagonalised, say $P^{-1}AP=D$ with $D$ diagonal, then make the substitution ${\mathbf x}=P{\mathbf y}.$ This yields $ \dot{\mathbf y}=D{\mathbf y} $ which is easily solved.
$\dot{\mathbf y} = D \mathbf y\;$ (from $\;(\star \star)$)
$\;\Ra\; \left( \begin{array}{r} \dot y_1(t) \\ \dot y_2(t) \\ \end{array} \right) = \left( \begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2\\ \end{array} \right) \left( \begin{array}{r} y_1(t) \\ y_2(t) \\ \end{array} \right) $
$\Ra\; \dot y_1 = \lambda_1y_1\;$ and $\; \dot y_2 = \lambda_2y_2.\qquad $
Finally, solve for $\,y_1$ and $y_2,\,$ then substitute into $\,\mathbf x = P\mathbf y\,$ to get $\,x_1, x_2.$
If $A$ is diagonalisable, say $P^{-1}AP=D$ with $D$ diagonal, then $$ A^n=PD^nP^{-1}. $$ This gives an easy way to calculate $A^n$.
From $A= PDP^{-1}$ we have that
$A^n$ $=\underbrace{PDP^{-1} P D P^{-1} \cdots P D P^{-1}}_{n-\text{times}}$ $=P D^n P^{-1},$
where $\;D^n $ $ = \left( \begin{array}{ccc} \lambda_1 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \lambda_n\\ \end{array} \right)^n$ $= \left( \begin{array}{ccc} \lambda_1^n & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \lambda_n^n\\ \end{array} \right).$
What can we say about the linear system (corresponding to a square matrix $A$)
$$ A{\mathbf x} = {\mathbf b}, $$
if we know how to diagonalise $A$?
Multiply $A{\mathbf x} = {\mathbf b}$ by $P^{-1}$ from left on both sides. Then we get
$P^{-1}A \mathbf x $ $= P^{-1}A I\mathbf x$ $= P^{-1}A P P^{-1}\mathbf x$ $= P^{-1} \mathbf b.\;$
Then $\;D\left(P^{-1} \mathbf x\right) = P^{-1} \mathbf b.$
Set $\mathbf y = P^{-1}\mathbf x,$ then $D\mathbf y = P^{-1} \mathbf b.$ 👈 This is a decoupled system! Finally, solve for $\mathbf y $ and then $\mathbf x = P \mathbf y.$