Chapter 13
Problem: Given a function $f\in C[a, b],$ find the best approximation to $f$ using only functions from a specified subspace $U$ of $C[a, b].$
Interpret "best possible" in the sense of least squares.
Consider $g$ as an approximation to $f$ as shown by the graph.
At point $x_0$ the error is $|\,f(x_0)-g(x_0)|$. For the entire interval, define error as $\int_a^b \left|\,f(x)-g(x)\right|dx.$ This is area between curves.
An easier definition (and one more amenable to calculations) is the mean squared error (MSE) \begin{align*} \text{MSE}=\int_a^b (\,f(x)-g(x))^2~dx. \end{align*} Use the integral inner product on $C[a,b]$ defined by \begin{align*} \langle \mathbf{p},\mathbf{q}\rangle &=\int_a^b p(x)q(x)~dx \end{align*}
\begin{align*} \Ra~\text{MSE}~=||\mathbf{f}-\mathbf{g}||^2&=\langle \mathbf{f}-\mathbf{g},\mathbf{f}-\mathbf{g}\rangle =\int_a^b (\,f(x)-g(x))^2~dx. \end{align*}
\begin{align*} \implies~\text{MSE}~=||\mathbf{f}-\mathbf{g}||^2&=\langle \mathbf{f}-\mathbf{g},\mathbf{f}-\mathbf{g}\rangle =\int_a^b (\,f(x)-g(x))^2~dx. \end{align*}
It follows that the best approximation to $f$ using only functions $g$'s from the subspace $U$ of $C[a,b]$ is achieved by minimizing $||\mathbf f - \mathbf g||^2$ relative to the above integral inner product.
Find the least squares approximation for $\sin x$ in the subspace of $C[0,\pi]$ spanned by $\{1,x,x^2\}.$ Use the inner product $$ \langle \mathbf{p},\mathbf{q}\rangle =\int_0^\pi p(x)q(x)~dx.$$
Look for $p(x)\in U$ such that $$\norm{\sin x - p(x)}^2 = \int_0^{\pi} \big(\sin x- p(x) \big)dx$$ is minimal.
Find the least squares approximation for $\sin x$ in the subspace of $C[0,\pi]$ spanned by $\{1,x,x^2\}$. Use the inner product $$ \langle \mathbf{p},\mathbf{q}\rangle =\int_0^\pi p(x)q(x)~dx. $$
Look for $p(x)\in U$ such that $$\norm{\sin x - p(x)}^2 = \int_0^{\pi} \big(\sin x- p(x) \big)dx$$ is minimal. From Chapter 12, the best approximation $p(x)$ for $\sin x$ is given by $$p(x) = \mathrm{Proj}_{U}(\sin x).$$
From Chapter 12, the best approximation $p(x)$ for $\sin x$ is given by
$\ds p(x) = \mathrm{Proj}_{U}(\sin x).$
Find the least squares approximation for $\sin x$ in the subspace of $C[0,\pi]$ spanned by $\{1,x,x^2\}.$ Use the inner product $$ \langle \mathbf{p},\mathbf{q}\rangle =\int_0^\pi p(x)q(x)~dx. $$
We actually have two methods from Chapter 12.
Solution 1. Use the Gram-Schmidt process to turn $\beta$ into an orthonormal basis $\{\hat{\bfe}_1, \hat{\bfe}_2, \hat{\bfe}_3\}.$ Then $p(x) = \mathrm{Proj}_{U}(\sin x)$ is given by \[ p(x) = \mathrm{Proj}_{U}(\sin x) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \; \] \[ = \big\langle\sin x , \hat{\bfe}_1\big\rangle\hat{\bfe}_1 + \big\langle\sin x , \hat{\bfe}_2\big\rangle\hat{\bfe}_2 + \big\langle\sin x , \hat{\bfe}_3\big\rangle\hat{\bfe}_3. \] This gives the best approximation for $\sin x$ by functions from $U.$
Find the least squares approximation for $\sin x$ in the subspace of $C[0,\pi]$ spanned by $\{1,x,x^2\}.$ Use the inner product $$ \langle \mathbf{p},\mathbf{q}\rangle =\int_0^\pi p(x)q(x)~dx. $$
We actually have two methods from Chapter 12.
Solution 1. Use the Gram-Schimdt process to turn $\beta$ into an orthonormal basis $\{\hat{\bfe}_1, \hat{\bfe}_2, \hat{\bfe}_3\}.$ Then $p(x) = \mathrm{Proj}_{U}(\sin x)$ is given by \[ p(x) = \mathrm{Proj}_{U}(\sin x) = \big\langle\sin x , \hat{\bfe}_1\big\rangle\hat{\bfe}_1 + \big\langle\sin x , \hat{\bfe}_2\big\rangle\hat{\bfe}_2 + \big\langle\sin x , \hat{\bfe}_3\big\rangle\hat{\bfe}_3. \] This gives the best approximation for $\sin x$ by functions from $U$.
Exercise: 📝 1) Find the orthonormal basis; 2) Compute $\big\langle \sin x, \hat{\bfe}_i \big\rangle$ for $i=1,2,3$; and, 3) Verify the answer is given by \[ p(x) = \frac{12\left(\pi^2-10\right)}{\pi^3} +\frac{60\left(12-\pi^2\right)}{\pi^4}x +\frac{60\left(\pi^2-12\right)}{\pi^5}x^2. \]
Find the least squares approximation for $\sin x$ in the subspace of $C[0,\pi]$ spanned by $\{1,x,x^2\}$; with $ \langle \mathbf{p},\mathbf{q}\rangle =\int_0^\pi p(x)q(x)~dx. $
Solution 2. Set $p(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2.$ Then $\alpha_1, \alpha_2,\alpha_3$ are determined by \[ \left( \begin{array}{ccc} \langle 1, 1 \rangle & \langle 1, x \rangle & \langle 1, x^2 \rangle \\ \langle x, 1 \rangle & \langle x, x \rangle & \langle x, x^2 \rangle \\ \langle x^2, 1 \rangle & \langle x^2, x \rangle & \langle x^2, x^2 \rangle \\ \end{array} \right) \left( \begin{array}{c} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \end{array} \right) = \left( \begin{array}{c} \langle \sin x, 1 \rangle \\ \langle \sin x, x \rangle \\ \langle \sin x, x^2 \rangle \\ \end{array} \right) \] $\ds \int_0^{\pi}x^ndx = \frac{\pi^{n+1}}{n+1},\,$ $\,\langle \sin x, 1 \rangle = 2,$ $\,\langle \sin x, x \rangle = \pi,$ $\,\langle \sin x, x^2 \rangle = \pi^2-4.$
$\ds\Ra \left( \begin{array}{ccc} \pi & \frac{\pi^2}{2} & \frac{\pi^3}{3} \\ \frac{\pi^2}{2} & \frac{\pi^3}{3} & \frac{\pi^4}{4} \\ \frac{\pi^3}{3} & \frac{\pi^4}{4} & \frac{\pi^5}{5} \\ \end{array} \right) \left( \begin{array}{c} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \end{array} \right) = \left( \begin{array}{c} 2\\ \pi \\ \pi^2-4 \\ \end{array} \right) $
Find the least squares approximation for $\sin x$ in the subspace of $C[0,\pi]$ spanned by $\{1,x,x^2\}$; with $ \langle \mathbf{p},\mathbf{q}\rangle =\int_0^\pi p(x)q(x)~dx. $
Solution 2. Set $p(x) = \alpha_1 + \alpha x + \alpha_3 x^2$. Then $\alpha_1, \alpha_2,\alpha_3$ are determined by
$ \left( \begin{array}{ccc} \pi & \dfrac{\pi^2}{2} & \dfrac{\pi^3}{3} \\ \dfrac{\pi^2}{2} & \dfrac{\pi^3}{3} & \dfrac{\pi^4}{4} \\ \dfrac{\pi^3}{3} & \dfrac{\pi^4}{4} & \dfrac{\pi^5}{5} \\ \end{array} \right) \left( \begin{array}{c} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \end{array} \right) = \left( \begin{array}{c} 2\\ \pi \\ \pi^2-4 \\ \end{array} \right) $
Solving this system we get same result from Solution 1. 😃 That is: \[ \alpha_1 = \frac{12\left(\pi^2-10\right)}{\pi^3},\;\; \alpha_2 = \frac{60\left(12-\pi^2\right)}{\pi^4},\;\; \alpha_3 = \frac{60\left(\pi^2-12\right)}{\pi^5}. \]
Find the least squares approximation for $\sin x$ in the subspace of $C[0,\pi]$ spanned by $\{1,x,x^2\}$; with $ \langle \mathbf{p},\mathbf{q}\rangle =\int_0^\pi p(x)q(x)~dx. $
In $C[0,2\pi],$ the set $$ \beta_n=\big\{\tfrac{1}{\sqrt{2\pi}}\big\}\cup\big\{\tfrac{1}{\sqrt{\pi}}\cos kx\,|\,k=1,\ldots,n\big\} \cup\big\{\tfrac{1}{\sqrt{\pi}}\sin kx\,|\,k=1,\ldots,n\big\}, $$ where $n\in\mathbb{N}_0,$ is orthonormal with respect to the inner product $$ \langle{\bf f},{\bf g}\rangle=\int_0^{2\pi}f(x)g(x)dx.$$
In $C[0,2\pi],$ the set $$ \beta_n=\big\{\tfrac{1}{\sqrt{2\pi}}\big\}\cup\big\{\tfrac{1}{\sqrt{\pi}}\cos kx\,|\,k=1,\ldots,n\big\} \cup\big\{\tfrac{1}{\sqrt{\pi}}\sin kx\,|\,k=1,\ldots,n\big\}, $$ where $n\in\mathbb{N}_0,$ is orthonormal with respect to the inner product $$ \langle{\bf f},{\bf g}\rangle=\int_0^{2\pi}f(x)g(x)dx. $$
Proof: First note that $\Big\langle \dfrac{1}{\sqrt{2\pi} }, \dfrac{1}{\sqrt{2\pi} } \Big\rangle = 1;$ $\Big\langle \dfrac{1}{\sqrt{2\pi} }, \cos(kx) \Big\rangle = 0;$ $\Big\langle \dfrac{1}{\sqrt{2\pi} }, \sin (kx) \Big\rangle = 0.$ Then $\dfrac{1}{\sqrt{2\pi}}$ is a unit vector perpendicular to each element in \[ \left\{\dfrac{1}{\sqrt{2\pi}} \cos (kx), \dfrac{1}{\sqrt{2\pi}}\sin (kx)~|~ k=1,\ldots, n\right\}. \]
Proof: Then
$\big\langle \cos \left(kx\right), \cos\left(k'x\right) \big\rangle$
$ = \ds\int_{0}^{2\pi} \cos \left(kx\right) \cos \left(k'x\right)dx$ | |
$=\ds \int_{0}^{2\pi} \frac{1}{2} \big[\cos \left( \left( k -k' \right)x \right) +\cos \left( \left( k +k' \right)x \right) \big]dx$ | |
$=\ds \left\{ \begin{array}{ll} \dfrac{1}{2} \left[ \dfrac{\sin \left( \left( k -k' \right)x \right)}{k-k'} + \dfrac{\sin \left( \left( k +k' \right)x \right)}{k+k'} \right]\Bigg|_0^{2\pi}, & k\neq k' \\ \dfrac{1}{2} \left[ x + \dfrac{\sin \left( 2k x \right)}{2k} \right]\Bigg|_0^{2\pi}, & k= k' \\ \end{array} \right. $ |
Proof: Then
$\big\langle \cos \left(kx\right), \cos\left(k'x\right) \big\rangle $
$ \qquad= \ds
\left\{
\begin{array}{ll}
\dfrac{1}{2} \left[ \dfrac{\sin \left( \left( k -k' \right)x \right)}{k-k'} + \dfrac{\sin \left( \left( k +k' \right)x \right)}{k+k'} \right]\Bigg|_0^{2\pi}, & k\neq k' \\
\dfrac{1}{2} \left[ x + \dfrac{\sin \left( 2k x \right)}{2k} \right]\Bigg|_0^{2\pi}, & k= k' \\
\end{array}
\right.
$
$ =\ds
\left\{
\begin{array}{cc}
0, & k\neq k' \\
{\large \pi}, & k= k' \\
\end{array}
\right. . \qquad\qquad\qquad\qquad\qquad \;\;\qquad
$
Thus $ \ds\left\{\frac{1}{\sqrt{ \pi }}\cos (kx )~|~ k=1, \ldots, n\right\} $ is orthonormal.
Proof: Similarly we can compute other inner products to obtain
$\big\langle \sin \left(kx\right), \sin\left(k'x\right) \big\rangle$ | $=$ | $\ds \int_0^{2\pi} \sin \left(kx\right) \sin \left(k'x\right)dx $ |
$=$ | $\ds \left\{ \begin{array}{cc} 0, & k\neq k' \\ \pi, & k= k' \\ \end{array} \right. $ |
So $ \ds\left\{\frac{1}{\sqrt{ \pi }}\sin (kx )~|~ k=1, \ldots, n\right\} $ is orthonormal.
Proof: Finally
$\big\langle \sin \left(kx\right), \cos\left(k'x\right) \big\rangle$ | $=$ | $\ds \int_0^{2\pi} \sin \left(kx\right) \cos \left(k'x\right)dx $ |
$=$ | $0,\;$ for any $k,k'.$ |
Thus $ \ds\left\{\frac{1}{\sqrt{ \pi }}\sin (kx )~|~ k=1, \ldots, n\right\} $ is perpendicular to $ \ds\left\{\frac{1}{\sqrt{ \pi }}\cos (kx )~|~ k=1, \ldots, n\right\} .$
It follows that $\beta_n$ is an orthonormal basis for the $(2n+1)$-dimensional subspace $W_n=\mathrm{span}(\beta_n)$ of $C[0,2\pi].$ The orthogonal projection of ${\bf f}\in C[0,2\pi]$ onto $W_n$ is given by $\mathrm{Proj}_{W_n}({\bf f}).$ In the limit $n\to\infty$, the corresponding approximation of $f(x)$ yields the Fourier series of $f(x)$ over the interval $[0,2\pi]$: $$ f(x)=\frac{a_0}{2}+\sum_{k=1}^\infty\,(a_k\cos kx+b_k\sin kx), $$ $$ \text{where } \;a_k=\frac{1}{\pi}\int_0^{2\pi}f(x)\cos kx\,dx,\;\; b_k=\frac{1}{\pi}\int_0^{2\pi}f(x)\sin kx\,dx, $$ are the associated Fourier coefficients.
To see this we need to find $\big \langle \mathbf f, \hat{\bfe}_k \big \rangle\hat{\bfe}_k $ in the sum.
For $\hat{\bfe}_0 = \dfrac{1}{\sqrt{2\pi}}$:
$
\big\langle \mathbf f, \hat{\bfe}_0 \big\rangle\hat{\bfe}_0
$
$= \ds\left(\int_0^{2\pi} f(x) \frac{1}{\sqrt{2\pi}}dx \right) \frac{1}{\sqrt{2\pi}}$
$= \ds\frac{a_0}{2},\;$
where $\ds a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx.$
For $\hat{\bfe}_k = \dfrac{1}{\sqrt{\pi}}\cos (kx)$:
$
\big\langle \mathbf f, \hat{\bfe}_k \big\rangle\hat{\bfe}_k
$
$= \ds\left(\int_0^{2\pi} f(x) \frac{1}{\sqrt{\pi}} \cos(kx) dx \right) \frac{1}{\sqrt{\pi}}\cos (kx)$
$= \ds a_k\cos (kx),\;$
where $\ds a_k = \frac{1}{\pi} \int_0^{2\pi} f(x)\cos(kx) dx.$
For $\hat{\bfe}_k = \dfrac{1}{\sqrt{\pi}}\sin (kx)$:
$
\big\langle \mathbf f, \hat{\bfe}_k \big\rangle\hat{\bfe}_k
$
$= \ds\left(\int_0^{2\pi} f(x) \frac{1}{\sqrt{\pi}} \sin(kx) dx \right) \frac{1}{\sqrt{\pi}} \sin (kx)$
$= \ds b_k\sin (kx),\;$
where $\ds b_k = \frac{1}{\pi} \int_0^{2\pi} f(x)\sin(kx) dx.$
For $\hat{\bfe}_0 = \dfrac{1}{\sqrt{2\pi}}$:
$ \big\langle \mathbf f, \hat{\bfe}_0 \big\rangle\hat{\bfe}_0 $ $= \ds\frac{a_0}{2},\;$ where $\ds a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx.$
For $\hat{\bfe}_k = \dfrac{1}{\sqrt{\pi}}\cos (kx)$:
$ \big\langle \mathbf f, \hat{\bfe}_k \big\rangle\hat{\bfe}_k $ $= \ds a_k\cos (kx),\;$ where $\ds a_k = \frac{1}{\pi} \int_0^{2\pi} f(x)\cos(kx) dx.$
For $\hat{\bfe}_k = \dfrac{1}{\sqrt{\pi}}\sin (kx)$:
$ \big\langle \mathbf f, \hat{\bfe}_k \big\rangle\hat{\bfe}_k $ $= \ds b_k\sin (kx),\;$ where $\ds b_k = \frac{1}{\pi} \int_0^{2\pi} f(x)\sin(kx) dx.$
The Fourier series of a real function $f$ defined on the interval $(-p,p)$ is given by \[ f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n\,\cos \left(\frac{n\, \pi}{p}x\right)+b_n\,\sin \left(\frac{n\, \pi}{p}x\right) \right), \] where \begin{eqnarray*} a_0&=&\frac{1}{p}\int_{-p}^pf(x)\,dx,\\ a_n&=&\frac{1}{p}\int_{-p}^pf(x)\,\cos \left(\frac{n\, \pi}{p}x\right)\,dx,\\ b_n&=&\frac{1}{p}\int_{-p}^pf(x)\,\sin \left(\frac{n\, \pi}{p}x\right)\,dx. \end{eqnarray*}
The Fourier series is named in honor of Jean Baptiste Joseph Fourier (1768-1830).
Example: Consider the function defined by $f(x)=x+\pi$ for $-\pi < x < \pi $ and $f(x)=f(x+2\pi)$ for $-\infty < x < \infty$. Its Fourier series expansion is \[ f(x)=\pi+2\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n+1}}{n}\sin (n\,x). \]
The square wave
The square wave Applets inspired by: Jez Swanson |
|
Source: Trigonometric interpolation