Final remarks

ODEs

Final remarks

First and second order ODEs are amazing! πŸ˜ƒ

You learnt about its applications and how we can use them
to model different phenomena! 😎



Final remarks

Now you have super powers (analytic methods)
to solve them! πŸš€

  • $\ds \dfrac{dC}{dt} = r - \alpha C, \; \alpha>0.$
  • $y''+ 6y'+ 9 y =0, \; y(0)=2,\,y'(0)=0.$
  • $y'' + 4 y'+5y = 12 \cos x + 4 \sin x.$
  • $\ds \dfrac{dP}{dt} = r P\left(1-\frac{P}{\theta}\right),\,r>0,\,\theta>0.$

😱 πŸ˜΅β€πŸ’« 😬 😭

πŸ€” 🀩 πŸ™‚ 😎



Final remarks

Eventough sometimes they are quite hard to solve them,
we still can model different phenomena with them! 😎

$$x^2\dfrac{d^2y}{dx^2} + x\dfrac{dy}{dx} + \left(x^2-\alpha^2 \right) y = 0 ,$$ $$\alpha \in \C.$$

Source: Bessel functions - circular drumhead



We can make fun simulations! πŸ˜ƒ












Or, more serious, simulations: The solar system 🀯!












πŸ¦‹ Lorenz Attractor! πŸ¦‹

$\left\{ \begin{eqnarray*} \frac{dx}{dt}&=&\sigma (-x + y)\\ \frac{dy}{dt}&=& -x z + \rho x - y \\ \frac{dz}{dt}&=& x y - \beta z \end{eqnarray*}\right.$

Final remarks

It gets even more interesting when we consider

Partial Differential Equations

For example, Laplace equation

$\dfrac{\partial^2u }{\partial x^2} + \dfrac{\partial^2u}{\partial y^2}+ \dfrac{\partial^2u }{\partial z^2}=0$





Final remarks

It gets even more interesting when we consider

Partial Differential Equations

Wave equation

$\dfrac{\partial^2u }{\partial t^2} = c^2\left( \dfrac{\partial^2u }{\partial x_1^2} + \dfrac{\partial^2u }{\partial x_2^2} + \cdots + \dfrac{\partial^2u }{\partial x_n^2} \right)$

Author: BrentHFoster





Final remarks

It gets even more interesting when we consider

Partial Differential Equations

Simulation by: Konstantin Makhmutov

Chladni Figures:

$$N^2\left( \dfrac{\partial^4 z}{\partial x^4} + 2 \dfrac{\partial^4 z}{\partial x^2\partial y^2} + \dfrac{\partial^4 z}{\partial y^4} \right) + \dfrac{\partial^2 z}{\partial t^2} = 0 ,$$ $$N\in \R.$$


Final remarks

It gets even more interesting when we consider

Partial Differential Equations


Another example: Navier-Stokes equations (imcompressible) \[ \rho \left(\frac{\partial \v}{\partial t} + \v \cdot \nabla \v \right) = -\nabla p + \mu \nabla^2 \v + \F, \quad \nabla \cdot \v = 0. \]





Final remarks

Another example: Navier-Stokes equations (imcompressible) \[ \rho \left(\frac{\partial \v}{\partial t} + \v \cdot \nabla \v \right) = -\nabla p + \mu \nabla^2 \v + \F, \quad \nabla \cdot \v = 0. \]

Fluid simulation by Amanda Ghassaei     πŸ”„ (Reset/Re-start)


Credits

Design, Images & Applets
Juan Carlos Ponce Campuzano


❀️ Support this project ❀️

Patreon