Lecture 13
18.2 The damped spring
Use mouse to drag mass and release.
Compare with the
undamped spring simulation shown before.
Source code
18.2 The damped spring
If you try the "spring-weight" system at home it is unlikely to display true simple harmonic motion. If that were possible you could build a perpetuum mobile.
To make the model more realistic we need to take into account the effect of damping. This is caused by air-resistance and mechanical friction of the spring.
18.2 The damped spring
The most common model of damping assumes that it corresponds to a force $F_d,$ proportional to the velocity of the moving object, and opposite to the direction of movement. Hence
$F_d =-\beta x',$
where $\beta>0$ is the damping constant measured in $\text{N s m}^{-1}.$
The total force $F$ for the damped spring is thus given by
$F= \underbrace{-\beta x'}_{\text{damping force}}\quad \underbrace{-k(s+x)}_{\text{restoring force}}+ \underbrace{m g}_{\text{gravitational force}}.$
18.2 The damped spring
$F= \underbrace{-\beta x'}_{\text{damping force}}\quad \underbrace{-k(s+x)}_{\text{restoring force}}+ \underbrace{m g}_{\text{gravitational force}}.$
As before, $k s=m g,$ so that
$F=-\beta x'-kx.$
Thanks to Newton's second law this yields the equation of motion
$m x''+\beta x'+k x=0.$
18.2 The damped spring
$F= \underbrace{-\beta x'}_{\text{damping force}}\quad \underbrace{-k(s+x)}_{\text{restoring force}}+ \underbrace{m g}_{\text{gravitational force}}.$
Thanks to Newton's second law this yields the equation of motion
$m x''+\beta x'+k x=0.$
This equation only depends on the ratios of $k/m$ and $\beta/m,$ and it is customary to not only set
$\ds \omega^2=\frac{k}{m}>0\,$ but also $\,\ds 2p=\frac{\beta}{m}>0.$
18.2 The damped spring
Then the equation of motion for the damped spring is given by
$x''+2p\,x'+\omega^2 x=0.$
This is a homogeneous second-order linear ODE with constant coefficients.
The corresponding characteristic equation is given by
$\lambda^2+2p\lambda+\omega^2=0,$
which has discriminant
$D=4\left(p^2-\omega^2\right).$
18.2 The damped spring
$x''+2p\,x'+\omega^2 x=0.$
$\lambda^2+2p\lambda+\omega^2=0 \implies D=4\left(p^2-\omega^2\right).$
There are three different cases to consider.
1.8.3 Underdamping
For $p\lt \omega$ the characteristic equation
$ \lambda^2+2p\lambda+\omega^2=0 $
has two complex conjugate roots
$ \lambda_1=-p+i\sqrt{\omega^2-p^2}\;\;\text{and}\;\; \lambda_2=-p-i\sqrt{\omega^2-p^2}. $
Two linearly independent solutions are thus
$e^{-p t}\cos(\omega_p t)\;\;\text{and}\;\; e^{-p t}\sin(\omega_p t),$
where
$ \omega_p=\sqrt{\omega^2-p^2}$ $=\omega\sqrt{1-(p/\omega)^2}.$
1.8.3 Underdamping
The general solution is
$ x(t)=e^{-p t}\Bigl(c_1\cos(\omega_p t)+c_2\sin(\omega_p t)\Bigr). $
This figure shows an example of underdamped motion:
1.8.3 Underdamping
$ x(t)=e^{-p t}\Bigl(c_1\cos(\omega_p t)+c_2\sin(\omega_p t)\Bigr). $
1.8.3 Underdamping
It is best to write the general solution in terms of a single trigonometric function:
$ x(t)=Ae^{-p t}\cos(\omega_p t-\phi) $ $ =A(t)\cos(\omega_p t-\phi). $
Here $A(t)$ is a time-dependent amplitude (as shown in the above figure with the dashed lines):
$A(t)=Ae^{-p t}$
and $\omega_p$ is the frequency of the underdamped spring.
1.8.3 Underdamping
Since
$ \ds \frac{\omega_p}{\omega} $ $ =\sqrt{1-(p/\omega)^2} $ $ \lt 1 $
the damping of the spring leads to a frequency red-shift and an increase in the period of the spring.
When $p$ approaches $\omega$ the period tends to infinity so that we may expect that the critically-damped spring does not display oscillatory motion. This is the case considered in the next section.
1.8.3 Underdamping
Example: A mass of $1$kg is attached to a spring hanging under gravity with damping constant $0.2$ and spring constant $4$. Find the position of the mass after time $t$ if it is pulled down $1$m from the equilibrium position and released without kick.
Recall $\,\ds x''+ \frac{\beta}{m}x' +\frac{k}{m}x = 0$
Then $\,m = 1,$ $\,\beta = 0.2,$ $\,k = 4.$
Initial conditions: $x(0)=1,$ $\,x'(0)=0.$
1.8.3 Underdamping
$\ds x''+ \frac{\beta}{m}x' +\frac{k}{m}x = 0;$ $\;\,m = 1,$ $\,\beta = 0.2,$ $\,k = 4.$ IVP: $x(0)=1,$ $\,x'(0)=0.$
Thus $\;\ds x''+ 0.2x' +4x = 0. $ What is the solution $x(t)$?
Rewrite $\;\ds x''+ \dfrac{1}{5}x' +4x = 0. $
Consider $\;\ds \lambda^2+ \dfrac{1}{5}\lambda +4 = 0. $
$\ds \Ra \lambda = \frac{-\dfrac{1}{5}\pm \sqrt{\left(\dfrac{1}{5}\right)^2-4(1)(4)}}{2}$ $\ds = - \frac{1}{10} \pm \frac{\sqrt{399}}{10} i$
1.8.3 Underdamping
Initial conditions: $x(0)=1,$ $\,x'(0)=0.$
$\ds \Ra \lambda = - \frac{1}{10} \pm \frac{\sqrt{399}}{10} i$
General sol:
$\ds x(t) = $ $\ds e^{-\frac{1}{10} t}\left[c_1 \cos \left(\frac{\sqrt{399}}{10} t\right) + c_2 \sin \left(\frac{\sqrt{399}}{10} t\right)\right] $
Now since $\,\ds x(0) = 1 $ $\ds = c_1(1) + c_2 (0)$ $\,\ds \Ra c_1 =1.$
1.8.3 Underdamping
Initial conditions: $x(0)=1,$ $\,x'(0)=0.$
$\ds x(t) = $ $\ds e^{-\frac{1}{10} t}\left[c_1 \cos \left(\frac{\sqrt{399}}{10} t\right) + c_2 \sin \left(\frac{\sqrt{399}}{10} t\right)\right] $
$\,\ds \Ra c_1 =1.$
$\ds x'(t) = $ $\ds -\frac{1}{10} e^{-\frac{1}{10} t}\left[c_1 \cos \left(\frac{\sqrt{399}}{10} t\right) + c_2 \sin \left(\frac{\sqrt{399}}{10} t\right)\right] $
$\quad \;\; \ds + \, e^{-\frac{1}{10} t}\left[-\frac{\sqrt{399}}{10}c_1 \sin \left(\frac{\sqrt{399}}{10} t\right) + \frac{\sqrt{399}}{10} c_2 \cos \left(\frac{\sqrt{399}}{10} t\right)\right] $
Since $\,\ds x'(0) = 0 $ $\ds = -\dfrac{1}{10} c_1 + \frac{\sqrt{399}}{10} c_2$ $\,\ds \Ra c_2 =\frac{1}{\sqrt{399}}.$
1.8.3 Underdamping
Example: A mass of $1$kg is attached to a spring hanging under gravity with damping constant $0.2$ and spring constant $4$. Find the position of the mass after time $t$ if it is pulled down $1$m from the equilibrium position and released without kick.
With the initial conditions $\,x(0)=1,$ $\,x'(0)=0;$ we obtain:
$$\,\ds c_1 =1\quad \text{and}\quad \ds c_2 =\frac{1}{\sqrt{399}}.$$
Therefore
$\ds\; x(t) = e^{-\frac{1}{10} t}\left[ \cos \left(\frac{\sqrt{399}}{10} t\right) + \frac{1}{\sqrt{399}} \sin \left(\frac{\sqrt{399}}{10} t\right)\right] .$ 😀
1.8.3 Underdamping