Gallery

Domain Coloring Gallery

HSL standard scheme

z

$z$

z+1/z

$z+\dfrac{1}{z}$

1/z

$\dfrac{1}{z}$

z^(1/2)

$z^{1/2}$

z^6+1

$z^{6}+1$

(z-1)/(z^2+z+1)

$\dfrac{z-1}{z^2+z+1}$


HSB scheme

Enhanced phase portraits for the function $f(z)=\dfrac{z-1}{z^2+z+1}.$

(z-1)/(z^2+z+1)

Simple phase portrait.

(z-1)/(z^2+z+1)

Phase contour lines.

(z-1)/(z^2+z+1)

Modulus contour lines.

(z-1)/(z^2+z+1)

Contour lines of modulus and phase.



Branches

$f(z)=z^{1/2}$

z^(1/2)

Branch 1

z^(1/2)

Branch 2



$f(z)=\sqrt{1-z^{2}}$

sqrt(1-z^2)

Branch 1

sqrt(1-z^2)

Branch 2



$f(z)=\dfrac{1}{\sqrt{1-z^{2}}}$

\frac{1}{\sqrt{1-z^{2}}}

Branch 1

\frac{1}{\sqrt{1-z^{2}}}

Branch 2



$f(z)=\log z$

log(z)

Branch -1

log(z)

Principal branch

log(z)

Branch 1



$f(z)=\arctan z$

arctan(z)

Branch -1

arctan(z)

Principal branch

arctan(z)

Branch 1



Singularities

Pole of order 1

(1-cosh(z))/z^3

$\dfrac{1-\cosh z}{z^3}$

Pole of order 2

e^(2z)/(z-1)^2

$\dfrac{\exp (2z)}{(z-1)^2}$

Pole of order 3

sinh(z)/z^4

$\dfrac{\sinh z}{z^4}$



Removable singularities

sin(z)/z

$\dfrac{\sin\left(z\right)}{z}$

(1-cos(z))/z^2

$\dfrac{1-\cos z}{z^2}$

z/(e^z-1)

$\dfrac{z}{e^z-1}$



Essential singularities

e^(1/z)

$\exp\left(\dfrac{1}{z}\right)$

(z-1) cos(1/z)

$(z-1)\cos\left(\dfrac{1}{z}\right)$

zsin(1/(iz))

$z \sin\left(\dfrac{1}{iz}\right)$


Level curves of real and imaginary components

z^2

$z^2$

z

$\log\left(\frac{z-1}{z+1}\right)$

z+1/z

$z+\frac{1}{z}$

z

$z+\log\left(z\right)/\pi$


Hypergeometric functions

$$_2F_1\left(a,b;c;z\right)=\sum_{n=0}^{\infty}\frac{(a)_n (b)_n}{(c)_n}\frac{z^n}{n!}$$

(z-1)/(z^2+z+1)

$_2F_1\left(1,\frac{3}{4};\frac{1}{2};z\right)$

(z-1)/(z^2+z+1)

$_2F_1\left(1-i,\frac{3}{4}i;-\frac{1}{2}i;z^2\right)$

Special cases

(z-1)/(z^2+z+1)

$z\cdot\, _2F_1\left(1,1;2;-z\right)$

(z-1)/(z^2+z+1)

$\log(1+z)$

(z-1)/(z^2+z+1)

$_2F_1\left(2-3i,b;b;z\right)$ $\,\forall b$

(z-1)/(z^2+z+1)

$(1-z)^{-(2-3i)}$

(z-1)/(z^2+z+1)

$z\cdot \,_2F_1\left(\frac{1}{2},1;\frac{3}{2};-z^2\right)$

(z-1)/(z^2+z+1)

$\arctan(z)$



Miscellaneous

((1/z)^{18}-(1/z))/(1/z-1)

$\dfrac{(1/z)^{18}-(1/z)}{1/z-1}$

sum(z^(n+1)/(1-z^(n+1)),20)

$\displaystyle \sum_{n=1}^{20}\dfrac{z^n}{1-z^n}$

sin(1/z^2)

$\sin(1/z^2)$



(1-1/z^2+z^3)^(1/2)

$\sqrt{1-1/z^2+z^3}$

(z-2-i)^2(z^2-1)/(z^2+2+i)

$\dfrac{(z-2-i)^2(z^2-1)}{z^2+2+i}$

z^(2/3+i)

$z^{2/3+i}$



z\sum(z^((n+1)i),5)

$\displaystyle \sum_{k=1}^{30}z^{ki}$

(z+i)(z-1)

$\dfrac{z+i}{z-1}$

e^(1-z^2)-1

$e^{1-z^2}-1$



0.926(z+7.3857e-2 z^5+4.5458e-3 z^9)

\begin{multline*} 0.926(z+0.073857 z^5\\ +0.0045458 z^9) \end{multline*}

(2z-2) (z^2+z-i)/(z^4-2+2i)

$\dfrac{(2z-2) (z^2+z-i)}{z^4-2+2i}$

z^(1+10i) cos((z-1)/(z^(13)+z+1))

\begin{eqnarray*} f(z) &=& z^{1+10i} \cos\left(g(z)\right),\text{ with}\\ g(z) &=& \frac{z-1}{z^{13}+z+1} \end{eqnarray*}

0.926(z+7.3857e-2 z^5+4.5458e-3 z^9)

Finite Blaschke product

(2z-2) (z^2+z-i)/(z^4-2+2i)

Atomic Singular Inner Function \({\small \displaystyle \prod_{k=1}^5\exp\left(\dfrac{z+w^k}{z-w^k}\right), w=\exp(2\pi i/5)}\)

z^(1+10i) cos((z-1)/(z^(13)+z+1))

Jacobi elliptic function cn$(z, 0.8)$


Different color schemes

Different phase portraits for the function $f(z)=\dfrac{-iz+1}{(-iz)^2-iz+1}.$

z

Level curves of modulus

z

Modulus, real and imaginary components

z

Gradient modulus



z

Level curves of modulus

z

Level curves of modulus

z

Discrete modulus



×

Creative Commons License